39 research outputs found

    Stable Integration of Transgenes Delivered by a Retrotransposon–Adenovirus Hybrid Vector

    Full text link
    Helper-dependent adenoviruses show great promise as gene delivery vectors. However, because they do not integrate into the host chromosome, transgene expression cannot be maintained indefinitely. To overcome these limitations, we have inserted an L1 retrotransposon/transgene element into a helper-dependent adenovirus to create a novel chimeric gene delivery vector. Efficient adenovirus-mediated delivery of the L1 element into cultured human cells results in subsequent retrotransposition and stable integration of the transgene. L1 retrotransposition frequency was found to correlate with increasing multiplicity of infection by the chimeric vector, and further retrotransposition from newly integrated elements was not observed on prolonged culture. Therefore, this vector, which utilizes components of low immunogenic potential, represents a novel two-stage gene delivery system capable of achieving high titers via the initial helper-dependent adenovirus stage and permanent transgene integration via the retrotransposition stage.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63154/1/104303401750298571.pd

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    An Observational Overview of Solar Flares

    Full text link
    We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.Comment: This is an article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011
    corecore