4 research outputs found

    Neutron Scattering Study of Crystal Field Energy Levels and Field Dependence of the Magnetic Order in Superconducting HoNi2B2C

    Full text link
    Elastic and inelastic neutron scattering measurements have been carried out to investigate the magnetic properties of superconducting (Tc~8K) HoNi2B2C. The inelastic measurements reveal that the lowest two crystal field transitions out of the ground state occurat 11.28(3) and 16.00(2) meV, while the transition of 4.70(9) meV between these two levels is observed at elevated temperatures. The temperature dependence of the intensities of these transitions is consistent with both the ground state and these higher levels being magnetic doublets. The system becomes magnetically long range ordered below 8K, and since this ordering energy kTN ~ 0.69meV << 11.28meV the magnetic properties in the ordered phase are dominated by the ground-state spin dynamics only. The low temperature structure, which coexists with superconductivity, consists of ferromagnetic sheets of Ho{3+ moments in the a-b plane, with the sheets coupled antiferromagnetically along the c-axis. The magnetic state that initially forms on cooling, however, is dominated by an incommensurate spiral antiferromagnetic state along the c-axis, with wave vector qc ~0.054 A-1, in which these ferromagnetic sheets are canted from their low temperature antiparallel configuration by ~17 deg. The intensity for this spiral state reaches a maximum near the reentrant superconducting transition at ~5K; the spiral state then collapses at lower temperature in favor of the commensurate antiferromagnetic state. We have investigated the field dependence of the magnetic order at and above this reentrant superconducting transition. Initially the field rotates the powder particles to align the a-b plane along the field direction, demonstrating that the moments strongly prefer to lie within this plane due to the crystal field anisotropy. Upon subsequently increasing the field atComment: RevTex, 7 pages, 11 figures (available upon request); Physica

    Specific Heat Study of the Magnetic Superconductor HoNi2B2C

    Full text link
    The complex magnetic transitions and superconductivity of HoNi2B2C were studied via the dependence of the heat capacity on temperature and in-plane field angle. We provide an extended, comprehensive magnetic phase diagram for B // [100] and B // [110] based on the thermodynamic measurements. Three magnetic transitions and the superconducting transition were clearly observed. The 5.2 K transition (T_{N}) shows a hysteresis with temperature, indicating the first order nature of the transition at B=0 T. The 6 K transition (T_{M}), namely the onset of the long-range ordering, displays a dramatic in-plane anisotropy: T_{M} increases with increasing magnetic field for B // [100] while it decreases with increasing field for B // [110]. The anomalous anisotropy in T_{M} indicates that the transition is related to the a-axis spiral structure. The 5.5 K transition (T^{*}) shows similar behavior to the 5.2 K transition, i.e., a small in-plane anisotropy and scaling with Ising model. This last transition is ascribed to the change from a^{*} dominant phase to c^{*} dominant phase.Comment: 9 pages, 11 figure
    corecore