350 research outputs found
Dynamics of the Solar Chromosphere. II. Ca II H2V and K2V Grains versus Internetwork Fields
We use the Advanced Stokes Polarimeter at the NSO/Sacramento Peak Vacuum Tower Telescope to search for spatio-
temporal correlations between enhanced magnetic fields in the quiet solar internetwork photosphere and the occurrence
of Ca II H2v grains in the overlying chromosphere.We address the question of whether the shocks that produce
the latter are caused by magnetism-related processes,or whether they are of purely hydrodynamic nature. The
observations presented here are the first in which sensitive Stokes polarimetry is combined synchronously with high-
resolution Ca II H spectrometry. We pay particular attention to the nature and significance of weak polarization
signals from the internetwork domain,obtaining a robust estimate of our magnetographic noise level at an apparent
flux density of only 3 Mxcm^-2 . For the quiet Sun internetwork area analyzed here,we find no direct correlation
between the presence of magnetic features with apparent flux density above this limit and the occurrence of H2v
brightenings.This result contradicts the one-to-one correspondence claimed by Sivaraman &Livingston (1982).We
also find no correspondence between H2v grains and the horizontal-?eld internetwork features discovered by Lites
et al.(1996)
Dynamics of the Quiet Solar Chromosphere
The solar chromosphere has never been static although it
was often modeled so.Even the quiet-sun internetwork chromosphere
has become thoroughly dynamic with the acoustic shock interpretation
of the Ca II K 2V grains. We concentrate on the latter in this brief review.
Recent analysis of ASP data confirms that their excitation is more likely
set acoustically than magnetically.TRACE imagery permits seeing-free
studies of their occurrence patterns
Weighted distances in scale-free preferential attachment models
We study three preferential attachment models where the parameters are such
that the asymptotic degree distribution has infinite variance. Every edge is
equipped with a non-negative i.i.d. weight. We study the weighted distance
between two vertices chosen uniformly at random, the typical weighted distance,
and the number of edges on this path, the typical hopcount. We prove that there
are precisely two universality classes of weight distributions, called the
explosive and conservative class. In the explosive class, we show that the
typical weighted distance converges in distribution to the sum of two i.i.d.
finite random variables. In the conservative class, we prove that the typical
weighted distance tends to infinity, and we give an explicit expression for the
main growth term, as well as for the hopcount. Under a mild assumption on the
weight distribution the fluctuations around the main term are tight.Comment: Revised version, results are unchanged. 30 pages, 1 figure. To appear
in Random Structures and Algorithm
Modelling and Interpreting The Effects of Spatial Resolution on Solar Magnetic Field Maps
Different methods for simulating the effects of spatial resolution on
magnetic field maps are compared, including those commonly used for
inter-instrument comparisons. The investigation first uses synthetic data, and
the results are confirmed with {\it Hinode}/SpectroPolarimeter data. Four
methods are examined, one which manipulates the Stokes spectra to simulate
spatial-resolution degradation, and three "post-facto" methods where the
magnetic field maps are manipulated directly. Throughout, statistical
comparisons of the degraded maps with the originals serve to quantify the
outcomes. Overall, we find that areas with inferred magnetic fill fractions
close to unity may be insensitive to optical spatial resolution; areas of
sub-unity fill fractions are very sensitive. Trends with worsening spatial
resolution can include increased average field strength, lower total flux, and
a field vector oriented closer to the line of sight. Further-derived quantities
such as vertical current density show variations even in areas of high average
magnetic fill-fraction. In short, unresolved maps fail to represent the
distribution of the underlying unresolved fields, and the "post-facto" methods
generally do not reproduce the effects of a smaller telescope aperture. It is
argued that selecting a method in order to reconcile disparate spatial
resolution effects should depend on the goal, as one method may better preserve
the field distribution, while another can reproduce spatial resolution
degradation. The results presented should help direct future inter-instrument
comparisons.Comment: Accepted for publication in Solar Physics. The final publication
(including full-resolution figures) will be available at
http://www.springerlink.co
Small-scale solar magnetic fields
As we resolve ever smaller structures in the solar atmosphere, it has become
clear that magnetism is an important component of those small structures.
Small-scale magnetism holds the key to many poorly understood facets of solar
magnetism on all scales, such as the existence of a local dynamo, chromospheric
heating, and flux emergence, to name a few. Here, we review our knowledge of
small-scale photospheric fields, with particular emphasis on quiet-sun field,
and discuss the implications of several results obtained recently using new
instruments, as well as future prospects in this field of research.Comment: 43 pages, 18 figure
Parameters of the Magnetic Flux inside Coronal Holes
Parameters of magnetic flux distribution inside low-latitude coronal holes
(CHs) were analyzed. A statistical study of 44 CHs based on Solar and
Heliospheric Observatory (SOHO)/MDI full disk magnetograms and SOHO/EIT 284\AA
images showed that the density of the net magnetic flux, , does
not correlate with the associated solar wind speeds, . Both the area and
net flux of CHs correlate with the solar wind speed and the corresponding
spatial Pearson correlation coefficients are 0.75 and 0.71, respectively. A
possible explanation for the low correlation between and
is proposed. The observed non-correlation might be rooted in the structural
complexity of the magnetic field. As a measure of complexity of the magnetic
field, the filling factor, , was calculated as a function of spatial
scales. In CHs, was found to be nearly constant at scales above 2 Mm,
which indicates a monofractal structural organization and smooth temporal
evolution. The magnitude of the filling factor is 0.04 from the Hinode SOT/SP
data and 0.07 from the MDI/HR data. The Hinode data show that at scales smaller
than 2 Mm, the filling factor decreases rapidly, which means a mutlifractal
structure and highly intermittent, burst-like energy release regime. The
absence of necessary complexity in CH magnetic fields at scales above 2 Mm
seems to be the most plausible reason why the net magnetic flux density does
not seem to be related to the solar wind speed: the energy release dynamics,
needed for solar wind acceleration, appears to occur at small scales below 1
Mm.Comment: 6 figures, approximately 23 pages. Accepted in Solar Physic
Solar Stereoscopy with STEREO/EUVI A and B spacecraft from small (6 deg) to large (170 deg) spacecraft separation angles
We performed for the first time stereoscopic triangulation of coronal loops
in active regions over the entire range of spacecraft separation angles
(, and
). The accuracy of stereoscopic correlation depends mostly on the
viewing angle with respect to the solar surface for each spacecraft, which
affects the stereoscopic correspondence identification of loops in image pairs.
From a simple theoretical model we predict an optimum range of , which is also experimentally confirmed. The best
accuracy is generally obtained when an active region passes the central
meridian (viewed from Earth), which yields a symmetric view for both STEREO
spacecraft and causes minimum horizontal foreshortening. For the extended
angular range of we find a mean 3D
misalignment angle of of stereoscopically
triangulated loops with magnetic potential field models, and for a force-free field model, which is partly caused by
stereoscopic uncertainties . We predict optimum
conditions for solar stereoscopy during the time intervals of 2012--2014,
2016--2017, and 2021--2023.Comment: Solar Physics, (in press), 22 pages, 9 figure
On the structure and evolution of a polar crown prominence/filament system
Polar crown prominences are made of chromospheric plasma partially circling
the Suns poles between 60 and 70 degree latitude. We aim to diagnose the 3D
dynamics of a polar crown prominence using high cadence EUV images from the
Solar Dynamics Observatory (SDO)/AIA at 304 and 171A and the Ahead spacecraft
of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195A. Using
time series across specific structures we compare flows across the disk in 195A
with the prominence dynamics seen on the limb. The densest prominence material
forms vertical columns which are separated by many tens of Mm and connected by
dynamic bridges of plasma that are clearly visible in 304/171A two-color
images. We also observe intermittent but repetitious flows with velocity 15
km/s in the prominence that appear to be associated with EUV bright points on
the solar disk. The boundary between the prominence and the overlying cavity
appears as a sharp edge. We discuss the structure of the coronal cavity seen
both above and around the prominence. SDO/HMI and GONG magnetograms are used to
infer the underlying magnetic topology. The evolution and structure of the
prominence with respect to the magnetic field seems to agree with the filament
linkage model.Comment: 24 pages, 14 figures, Accepted for publication in Solar Physics
Journal, Movies can be found at http://www2.mps.mpg.de/data/outgoing/panesar
Small scale energy release driven by supergranular flows on the quiet Sun
In this article we present data and modelling for the quiet Sun that strongly suggest a ubiquitous small-scale atmospheric heating mechanism that is driven solely by converging supergranular flows.
A possible energy source for such events is the power transfer to the plasma via the work done on the magnetic field by photospheric convective flows, which exert drag of the footpoints of magnetic structures. In this paper we present evidence of small scale energy release events driven directly by the hydrodynamic forces that act on the magnetic elements in the photosphere, as a result of supergranular scale flows. We show strong spatial and temporal correlation between quiet Sun soft X-ray emission (from <i>Yohkoh</i> and <i>SOHO</i> MDI-derived flux removal events driven by deduced photospheric flows.
We also present a simple model of heating generated by flux submergence, based on particle acceleration by converging magnetic mirrors.
In the near future, high resolution soft X-ray images from XRT on the <i>Hinode</i> satellite will allow definitive, quantitative verification of our results
Space-Time Distribution of G-Band and Ca II H-Line Intensity Oscillations in Hinode/SOT-FG Observations
We study the space-time distributions of intensity fluctuations in 2 - 3 hour
sequences of multi-spectral, high-resolution, high-cadence broad-band
filtergram images (BFI) made by the SOT-FG system aboard the Hinode spacecraft.
In the frequency range 5.5 < f < 8.0 mHz both G-band and Ca II H-line
oscillations are suppressed in the presence of magnetic fields, but the
suppression disappears for f > 10 mHz. By looking at G-band frequencies above
10 mHz we find that the oscillatory power, both at these frequencies and at
lower frequencies too, lies in a mesh pattern with cell scale 2 - 3 Mm, clearly
larger than normal granulation, and with correlation times on the order of
hours. The mesh pattern lies in the dark lanes between stable cells found in
time-integrated G-band intensity images. It also underlies part of the bright
pattern in time-integrated H-line emission. This discovery may reflect
dynamical constraints on the sizes of rising granular convection cells together
with the turbulence created in strong intercellular downflows.Comment: 24 pages, 15 figure
- …