96 research outputs found
Tomato: a crop species amenable to improvement by cellular and molecular methods
Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures.
In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.
Surviving a Genome Collision: Genomic Signatures of Allopolyploidization in the Recent Crop Species Brassica napus
Polyploidization has played a major role in crop plant evolution, leading to advantageous traits that have been selected by humans. Here, we describe restructuring patterns in the genome of L., a recent allopolyploid species. Widespread segmental deletions, duplications, and homeologous chromosome exchanges were identified in diverse genome sequences from 32 natural and 20 synthetic accessions, indicating that homeologous exchanges are a major driver of postpolyploidization genome diversification. Breakpoints of genomic rearrangements are rich in microsatellite sequences that are known to interact with the meiotic recombination machinery. In both synthetic and natural , a subgenome bias was observed toward exchanges replacing larger chromosome segments from the C-subgenome by their smaller, homeologous A-subgenome segments, driving postpolyploidization genome size reduction. Selection in natural favored segmental deletions involving genes associated with immunity, reproduction, and adaptation. Deletions affecting mismatch repair system genes, which are assumed to control homeologous recombination, were also found to be under selection. Structural exchanges between homeologous subgenomes appear to be a major source of novel genetic diversity in de novo allopolyploids. Documenting the consequences of genomic collision by genomic resequencing gives insights into the adaptive processes accompanying allopolyploidization
- …