22 research outputs found

    Defects in N-glycosylation induce apoptosis in yeast

    No full text
    N-glycosylation in the endoplasmic reticulum is an essential protein modification and highly conserved in evolution from yeast to man. Defects of N-glycosylation in humans lead to congenital disorders. The pivotal step of this pathway is the transfer of the evolutionarily conserved lipid-linked core-oligosaccharide to the nascent polypeptide chain, catalysed by the oligosaccharyltransferase. One of its nine subunits, Ost2, has homology to DAD1, originally characterized in hamster cells as a defender against apoptotic death. Here we show that ost mutants, such as ost2 and wbp1-1, display morphological and biochemical features of apoptosis upon induction of the glycosylation defect. We observe nuclear condensation, DNA fragmentation as well as externalization of phosphatidylserine. We also demonstrate induction of caspase-like activity, both determined by flow cytometric analysis and in cell-free extracts. Similarly, the N-glycosylation inhibitor tunicamycin in combination with elevated temperature is able to challenge the apoptotic cascade. Heterologous expression of anti-apoptotic human Bcl-2 diminishes caspase activation, improves survival of cells and suppresses the temperature-sensitive growth defect of wbp1-1. Furthermore, accumulation of reactive oxygen species occurs in response to defective glycosylation. As deletion of the metacaspase YCA1 does not seem to abrogate glycosylation-induced apoptosis, we postulate a different proteolytic process to be involved in this death pathway

    Reorientation of Mispositioned Spindles in Short Astral Microtubule Mutant spc72Δ Is Dependent on Spindle Pole Body Outer Plaque and Kar3 Motor Protein

    Get PDF
    Nuclear migration and positioning in Saccharomyces cerevisiae depend on long astral microtubules emanating from the spindle pole bodies (SPBs). Herein, we show by in vivo fluorescence microscopy that cells lacking Spc72, the SPB receptor of the cytoplasmic Îł-tubulin complex, can only generate very short (<1 ÎĽm) and unstable astral microtubules. Consequently, nuclear migration to the bud neck and orientation of the anaphase spindle along the mother-bud axis are absent in these cells. However, SPC72 deletion is not lethal because elongated but misaligned spindles can frequently reorient in mother cells, permitting delayed but otherwise correct nuclear segregation. High-resolution time-lapse sequences revealed that this spindle reorientation was most likely accomplished by cortex interactions of the very short astral microtubules. In addition, a set of double mutants suggested that reorientation was dependent on the SPB outer plaque and the astral microtubule motor function of Kar3 but not Kip2/Kip3/Dhc1, or the cortex components Kar9/Num1. Our observations suggest that Spc72 is required for astral microtubule formation at the SPB half-bridge and for stabilization of astral microtubules at the SPB outer plaque. In addition, our data exclude involvement of Spc72 in spindle formation and elongation functions

    References

    No full text
    corecore