36 research outputs found
Canopy CO2 concentrations and Crassulacean acid metabolism in Hoya carnosa in a subtropical rain forest in Taiwan: consideration of CO2 avallability and the evolution of CAM in epiphytes
The potential importance of CO2 derived from host tree respiration at night as a substrate for night time CO2 uptake during CAM was investigated in the subtropical and tropical epiphytic vine Hoya carnosa in a subtropical rainforest in north-eastern Taiwan. Individuals were examined within the canopies of host trees in open, exposed situations, as well as in dense forests. Although night time CO2 concentrations were higher near the epiphytic vines at night, relative to those measured during the day, presumably the result Of CO2 added to the canopy air by the host tree, no evidence for substantial use of this CO2 was found. In particular, stable carbon isotope ratios of H. carnosa were not substantially lower than those of many other CAM plants, as would be expected if host-respired CO2 were an important source Of CO2 for these CAM epiphytes. Furthermore, laboratory measurements of diel CO2 exchange revealed a substantial contribution of daytime CO2 uptake in these vines, which should also result in lower carbon isotope values than those characteristic of a CAM plant lacking daytime CO2 uptake. Overall, we found that host-respired CO2 does not contribute substantially to the carbon budget of this epiphytic CAM plant. This finding does not support the hypothesis that CAM may have evolved in tropical epiphytes in response to diel changes in the CO2 concentrations within the host tree canopy
A century of trends in adult human height
Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5-22.7) and 16.5 cm (13.3-19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8-144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries
Rising rural body-mass index is the main driver of the global obesity epidemic in adults
Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities 1,2 . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity 3�6 . Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55 of the global rise in mean BMI from 1985 to 2017�and more than 80 in some low- and middle-income regions�was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing�and in some countries reversal�of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories. © 2019, The Author(s)
Ecophysiological differences between sterile and fertile fronds of the subtropical epiphytic fern Pyrrosia lingua (Polypodiaceae) in Taiwan
Many ferns have specialized fronds that bear sporangia, whereas sterile fronds lack reproductive structures. Although a strong case can be made that the presence of the sporangia will affect the physiology of the frond, only one study could be located that investigated this phenomenon. Thus, ecophysiological (and some morphological) features of fertile fronds were compared with those of sterile fronds of the subtropical epiphytic fern Pyrrosio lingua in Taiwan. Fertile fronds were thicker than sterile fronds, a result of the presence of the large sori. Stomatal sizes and densities did not differ between the two types of fronds. The osmotic potential of liquid expressed from the fertile fronds was more negative than that of the liquid of sterile fronds, although this may be an artifact clue to a matric effect of the released spores. No differences in chlorophyll concentrations (area basis only) and a/b ratios were found between sterile and fertile fronds. In situ rates of net CO, exchange of the fertile fronds were substantially lower than those of the sterile fronds. Similar stomatal conductances and internal CO, concentrations in the sterile fronds indicated that the efficiency of the photosynthetic apparatus was lower in fertile relative to sterile fronds. The results of this study indicate that the presence of sori on fronds of the epiphytic fern Pyrrosia linguo reduces the photosynthetic capacity of these fronds and, most likely, the productivity of plants harboring many fertile fronds
Ecophysiology and plant size in a tropical epiphytic fern, Asplenium nidus, in Taiwan
Recent studies indicate that, especially in epiphytes, plant size has a strong influence on the ecophysiology of individual leaves of a plant. Extensive data sets that address this phenomenon, however, are limited to a few taxa of flowering plants. It was the purpose of this study to examine numerous physiological parameters in individuals of varying sizes of Asplenium nidus, a widespread epiphytic tropical fern, in a rain forest in northeastern Taiwan. Although stomatal dimensions and frond thickness did not vary with plant size, frond stomatal densities were higher in larger plants. Frond elemental concentration did not vary with plant size for nitrogen, magnesium, phosphorus, and sodium, while the concentrations of carbon, calcium, and potassium changed with plant size, though in different ways. The osmotic concentration of liquid expressed from the fronds did not change with plant size, nor did chlorophyll concentrations and chlorophyll a/b ratio. Fronds excised from smaller plants contained more water yet lost water at lower rates in laboratory drying experiments. Although rates of net CO2 exchange of the fronds measured in situ in the field appeared to increase with plant size, this increase and other size-related differences in gas exchange parameters were not significant. Although some aspects of the ecophysiology of this epiphytic fern varied with changes in plant size, most physiological parameters did not. Thus, the results of this study lend only little support to past findings that plant size is an important consideration in ecophysiological studies of plants