8 research outputs found

    True substrates: The exceptional resolution and unexceptional preservation of deep time snapshots on bedding surfaces

    Get PDF
    Abstract: Rock outcrops of the sedimentary–stratigraphic record often reveal bedding planes that can be considered to be true substrates: preserved surfaces that demonstrably existed at the sediment–water or sediment–air interface at the time of deposition. These surfaces have high value as repositories of palaeoenvironmental information, revealing fossilized snapshots of microscale topography from deep time. Some true substrates are notable for their sedimentary, palaeontological and ichnological signatures that provide windows into key intervals of Earth history, but countless others occur routinely throughout the sedimentary–stratigraphic record. They frequently reveal patterns that are strikingly familiar from modern sedimentary environments, such as ripple marks, animal trackways, raindrop impressions or mudcracks: all phenomena that are apparently ephemeral in modern settings, and which form on recognizably human timescales. This paper sets out to explain why these short‐term, transient, small‐scale features are counter‐intuitively abundant within a 3.8 billion year‐long sedimentary–stratigraphic record that is known to be inherently time‐incomplete. True substrates are fundamentally related to a state of stasis in ancient sedimentation systems, and distinguishable from other types of bedding surfaces that formed from a dominance of states of deposition or erosion. Stasis is shown to play a key role in both their formation and preservation, rendering them faithful and valuable archives of palaeoenvironmental and temporal information. Further, the intersection between the time–length scale of their formative processes and outcrop expressions can be used to explain why they are so frequently encountered in outcrop investigations. Explaining true substrates as inevitable and unexceptional by‐products of the accrual of the sedimentary–stratigraphic record should shift perspectives on what can be understood about Earth history from field studies of the sedimentary–stratigraphic record. They should be recognized as providing high‐definition information about the mundane day to day operation of ancient environments, and critically assuage the argument that the incomplete sedimentary–stratigraphic record is unrepresentative of the geological past

    Biogeography of terrestrial and freshwater vertebrates from the late Cretaceous (Campanian) Western Interior of North America

    No full text
    Previous biogeographic studies of late Cretaceous (late Campanian) vertebrate faunas in the Western Interior Basin (WIB) of North America have suggested the presence of faunal and floral provincialism, characterized by distinct northern and southern 'biomes.' However, the "provincialism hypothesis" has been questioned based largely on the contention that the investigated faunas were recovered from a series of diachronous, time-transgressive deposits, and are therefore non-correlative.\ud \ud Extensive work in several fossiliferous units of late Campanian age, including the Dinosaur Park, Judith River, Two Medicine, Kaiparowits, Fruitland/Kirtland, and Aguja formations, has greatly increased understanding of WIB vertebrate faunas and their chronostratigraphic relationships. Here updated and greatly expanded faunal and chronostratigraphic datasets are utilized to undertake an extensive biogeographic analysis of these six terrestrial fossiliferous formations within the WIB of North America. Quantitative biogeographic comparisons of the formations and their constituent faunas are conducted using four statistical methods: Analysis of Similarity, Q-mode cluster analysis, Parsimony Analysis of Endemicity, and Correspondence Analysis.\ud \ud The results of this study provide strong support for highly divergent faunas in northern and southern regions of the WIB, with a latitudinal faunal gradient as an interface. Yet the nature of the interface between these faunas remains unclear, with possibilities including: 1) two or more discrete provinces separated by a zone (or zones) of faunal mixing; and 2) a continuous latitudinal gradient or cline, with no discrete zones of endemism. Lacking evidence of any physiographic barrier to north–south dispersal, climatic variation within the WIB is regarded as the most likely explanation for the overarching biogeographic patterns observed for late Campanian vertebrate taxa

    Biogeography of terrestrial and freshwater vertebrates from the late Cretaceous (Campanian) Western Interior of North America

    Get PDF
    Previous biogeographic studies of late Cretaceous (late Campanian) vertebrate faunas in the Western Interior Basin (WIB) of North America have suggested the presence of faunal and floral provincialism, characterized by distinct northern and southern 'biomes.' However, the "provincialism hypothesis" has been questioned based largely on the contention that the investigated faunas were recovered from a series of diachronous, time-transgressive deposits, and are therefore non-correlative.\ud \ud Extensive work in several fossiliferous units of late Campanian age, including the Dinosaur Park, Judith River, Two Medicine, Kaiparowits, Fruitland/Kirtland, and Aguja formations, has greatly increased understanding of WIB vertebrate faunas and their chronostratigraphic relationships. Here updated and greatly expanded faunal and chronostratigraphic datasets are utilized to undertake an extensive biogeographic analysis of these six terrestrial fossiliferous formations within the WIB of North America. Quantitative biogeographic comparisons of the formations and their constituent faunas are conducted using four statistical methods: Analysis of Similarity, Q-mode cluster analysis, Parsimony Analysis of Endemicity, and Correspondence Analysis.\ud \ud The results of this study provide strong support for highly divergent faunas in northern and southern regions of the WIB, with a latitudinal faunal gradient as an interface. Yet the nature of the interface between these faunas remains unclear, with possibilities including: 1) two or more discrete provinces separated by a zone (or zones) of faunal mixing; and 2) a continuous latitudinal gradient or cline, with no discrete zones of endemism. Lacking evidence of any physiographic barrier to north–south dispersal, climatic variation within the WIB is regarded as the most likely explanation for the overarching biogeographic patterns observed for late Campanian vertebrate taxa
    corecore