73,148 research outputs found
Study of unstable particle through the spectral function in O(4) theory
We test application of the maximum entropy method to decompose the states
contributing to the unstable correlation function through the spectral
function in the four dimensional O(4) theory. Reliable results are
obtained for the mass and two-particle state energy using
only the correlation function. We also find that the property of the
particle is different between the unstable ()
and stable () cases.Comment: Lattice2002(spectrum), 3 page
An improved panel method for the solution of three-dimensional leading edge vortex flows Volume 2: User's guide and programmer's document
A computer program developed for solving the subsonic, three dimensional flow over wing-body configurations with leading edge vortex separation is presented. Instructions are given for the proper set up and input of a problem into the computer code. Program input formats and output are described, as well as the overlay structure of the program. The program is written in FORTRAN
Closed-form Absorption Probability of Certain D=5 and D=4 Black Holes and Leading-Order Cross-Section of Generic Extremal p-branes
We obtain the closed-form absorption probabilities for minimally-coupled
massless scalars propagating in the background of D=5 single-charge and D=4
two-charge black holes. These are the only two examples of extremal black holes
with non-vanishing absorption probabilities that can be solved in closed form
for arbitrary incident frequencies. In both cases, the absorption probability
vanishes when the frequency is below a certain threshold, and we discuss the
connection between this phenomenon and the behaviour of geodesics in these
black hole backgrounds. We also obtain leading-order absorption cross-sections
for generic extremal p-branes, and show that the expression for the
cross-section as a function of frequency coincides with the leading-order
dependence of the entropy on the temperature in the corresponding near-extremal
p-branes.Comment: Latex (3 times), 20 page
Consistent Estimation of Mixed Memberships with Successive Projections
This paper considers the parameter estimation problem in Mixed Membership
Stochastic Block Model (MMSB), which is a quite general instance of random
graph model allowing for overlapping community structure. We present the new
algorithm successive projection overlapping clustering (SPOC) which combines
the ideas of spectral clustering and geometric approach for separable
non-negative matrix factorization. The proposed algorithm is provably
consistent under MMSB with general conditions on the parameters of the model.
SPOC is also shown to perform well experimentally in comparison to other
algorithms
Tailoring pH-responsive acrylic acid microgels with hydrophobic crosslinks for drug release
Amphiphilic microgels based on the hydrophilic acrylic acid (AA) and hydrophobic crosslinks of different compositions were synthesised using a lab-on-a-chip device. The microgels were formed by polymerising hydrophobic droplets. The droplets were generated via a microfluidic platform and contained a protected form of AA, a hydrophobic crosslinker (ethylene glycol dimethacrylate, EGDMA) and a free radical initiator in an organic solvent. Following photopolymerisation and subsequent hydrolysis, AA based microgels of amphiphilic nature were produced and it was demonstrated that they can successfully deliver both hydrophilic as well as hydrophobic moieties. The model drug delivery and the swelling ability of the microgels were influenced by the pH of the aqueous solution as well as the crosslinking density and hydrophobic content of the microgels
Microfluidically fabricated pH-responsive anionic amphiphilic microgels for drug release
© 2016 The Royal Society of Chemistry. Amphiphilic microgels of different composition based on the hydrophilic, pH-responsive acrylic acid (AA) and the hydrophobic, non-ionic n-butyl acrylate (BuA) were synthesised using a lab-on-a-chip device. Hydrophobic droplets were generated via a microfluidic platform that contained a protected form of AA, BuA, the hydrophobic crosslinker, ethylene glycol dimethacrylate (EGDMA), and a free radical initiator in an organic solvent. These hydrophobic droplets were photopolymerised within the microfluidic channels and subsequently hydrolysed, enabling an integrated platform for the rapid, automated, and in situ production of anionic amphiphilic microgels. The amphiphilic microgels did not feature the conventional core-shell structure but were instead based on random amphiphilic copolymers of AA and BuA and hydrophobic crosslinks. Due to their amphiphilic nature they were able to encapsulate and deliver both hydrophobic and hydrophilic moieties. The model drug delivery and the swelling ability of the microgels were influenced by the pH of the surrounding aqueous solution and the hydrophobic content of the microgels
An improved panel method for the solution of three-dimensional leading-edge vortex flows. Volume 1: Theory document
An improved panel method for the solution of three dimensional flow and wing and wing-body combinations with leading edge vortex separation is presented. The method employs a three dimensional inviscid flow model in which the configuration, the rolled-up vortex sheets, and the wake are represented by quadratic doublet distributions. The strength of the singularity distribution as well as shape and position of the vortex spirals are computed in an iterative fashion starting with an assumed initial sheet geometry. The method calculates forces and moments as well as detail surface pressure distributions. Improvements include the implementation of improved panel numerics for the purpose of elimination the highly nonlinear effects of ring vortices around double panel edges, and the development of a least squares procedure for damping vortex sheet geometry update instabilities. A complete description of the method is included. A variety of cases generated by the computer program implementing the method are presented which verify the mathematical assumptions of the method and which compare computed results with experimental data to verify the underlying physical assumptions made by the method
The Cosmic Evolution of Faint Satellite Galaxies as a Test of Galaxy Formation and the Nature of Dark Matter
The standard cosmological model based on cold dark matter (CDM) predicts a
large number of subhalos for each galaxy-size halo. It is well known that
matching the subhalos to the observed properties of luminous satellites of
galaxies in the local universe poses a significant challenge to our
understanding of the astrophysics of galaxy formation. We show that the cosmic
evolution and host mass dependence of the luminosity function of satellites
provides a powerful new diagnostic to disentangle astrophysical effects from
variations in the underlying dark matter mass function. We illustrate this by
comparing the results of recent observations of satellites out to based
on Hubble Space Telescope images with the predictions of three different sets
of state-of-the art semi-analytic models with underlying CDM power spectra and
one semi-analytic model with an underlying Warm Dark Matter (WDM) power
spectrum. We find that even though CDM models provide a reasonable fit to the
local luminosity function of satellites around galaxies comparable or slightly
larger than the Milky Way, they do not reproduce the data as well for different
redshift and host galaxy stellar mass. This tension indicates that further
improvements are likely to be needed in the description of star formation if
the models are to be reconciled with the data. The WDM model matches the
observed mass dependence and redshift evolution of satellite galaxies more
closely than any of the CDM models, indicating that a modification of the
underlying power spectrum may offer an alternative solution to this tension. We
conclude by presenting predictions for the color magnitude relation of
satellite galaxies to demonstrate how future observations will be able to
further distinguish between these models and help constrain baryonic and
non-baryonic physics.Comment: Accepted for publication in ApJ, revised to incorporate referee
comment
Donor hematopoietic progenitor cells in nonmyeloablated rat recipients of allogeneic bone marrow and liver grafts
Background. Although the persistence of multilineage microchimerism in recipients of long-surviving organ transplants implies engraftment of migratory pluripotent donor stem cells, the ultimate localization in the recipient of these cells has not been determined in any species. Methods. Progenitor cells were demonstrated in the bone marrow and nonparenchymal liver cells of naive rats and in Brown Norway (BN) recipients of Lewis (LEW) allografts by semiquantitative colony-forming unit in culture (CFU-C) assays. The LEW allografts of bone marrow cells (BMC) (2.5xl08), orthotopic livers, or heterotopic hearts (abdominal site) were transplanted under a 2-week course of daily tacrolimus, with additional single doses on days 20 and 27. Donor CFU-C colonies were distinguished from recipient colonies in the allografts and recipient bone marrow with a donor-specific MHC class II monoclonal antibody. The proportions of donor and recipient colonies were estimated from a standard curve created by LEW and BN bone marrow mixtures of known concentrations. Results. After the BMC infusions, 5-10% of the CFU-C in the bone marrow of BN recipients were of the LEW phenotype at 14, 30, and 60 days after transplantation. At 100 days, however, donor CFU-C could no longer be found at this site. The pattern of LEW CFU-C in the bone marrow of BN liver recipients up to 60 days was similar to that in recipients of 2.5 x 108 BMC, although the donor colonies were only 1/20 to 1/200 as numerous. This was expected, because the progenitor cells in the passenger leukocytes of a single liver are equivalent to those in 1-5x106 BMC. Using a liquid CFU-C assay, donor progenitor cells were demonstrated among the nonparenchymal cells of liver allografts up to 100 days. In contrast, after heart transplantation, donor CFU-C could not be identified in the recipient bone marrow, even at 14 days. Conclusion. Under effective immunosuppression, allogeneic hematopoietic progenitors compete effectively with host cells for initial engraftment in the bone marrow of noncytoablated recipients, but disappear from this location between 60 and 100 days after transplantation, coincident with the shift of donor leukocyte chimerism from the lymphoid to the nonlymphoid compartment that we previously have observed in this model. It is possible that the syngeneic parenchymal environment of the liver allografts constitutes a privileged site for persistent progenitor donor cells
- …