11,325 research outputs found

    Stabilisation of BGK modes by relativistic effects

    Get PDF
    Context. We examine plasma thermalisation processes in the foreshock region of astrophysical shocks within a fully kinetic and self-consistent treatment. We concentrate on proton beam driven electrostatic processes, which are thought to play a key role in the beam relaxation and the particle acceleration. Our results have implications for the effectiveness of electron surfing acceleration and the creation of the required energetic seed population for first order Fermi acceleration at the shock front. Aims. We investigate the acceleration of electrons via their interaction with electrostatic waves, driven by the relativistic Buneman instability, in a system dominated by counter-propagating proton beams. Methods. We adopt a kinetic Vlasov-Poisson description of the plasma on a fixed Eulerian grid and observe the growth and saturation of electrostatic waves for a range of proton beam velocities, from 0.15c to 0.9c. Results. We can report a reduced stability of the electrostatic wave (ESW) with increasing non-relativistic beam velocities and an improved wave stability for increasing relativistic beam velocities, both in accordance with previous findings. At the highest beam speeds, we find the system to be stable again for a period of ≈160 plasma periods. Furthermore, the high phase space resolution of the Eulerian Vlasov approach reveals processes that could not be seen previously with PIC simulations. We observe a, to our knowledge, previously unreported secondary electron acceleration mechanism at low beam speeds. We believe that it is the result of parametric couplings to produce high phase velocity ESW’s which then trap electrons, accelerating them to higher energies. This allows electrons in our simulation study to achieve the injection energy required for Fermi acceleration, for beam speeds as low as 0.15c in unmagnetised plasma

    Quantum thermodynamics at critical points during melting and solidification processes

    Full text link
    We systematically explore and show the existence of finite-temperature continuous quantum phase transition (CTQPT) at a critical point, namely, during solidification or melting such that the first-order thermal phase transition is a special case within CTQPT. Infact, CTQPT is related to chemical reaction where quantum fluctuation (due to wavefunction transformation) is caused by thermal energy and it can occur maximally for temperatures much higher than zero Kelvin. To extract the quantity related to CTQPT, we use the ionization energy theory and the energy-level spacing renormalization group method to derive the energy-level spacing entropy, renormalized Bose-Einstein distribution and the time-dependent specific heat capacity. This work unambiguously shows that the quantum phase transition applies for any finite temperatures.Comment: To be published in Indian Journal of Physics (Kolkata

    Haptoglobin genotype, haemoglobin and malaria in Gambian children

    Get PDF

    Failure of hospital employees to comply with smoke-free policy is associated with nicotine dependence and motives for smoking: A descriptive cross-sectional study at a teaching hospital in the United Kingdom

    Get PDF
    Abstract Background Smoke-free policy aims to protect the health of the population by reducing exposure to environmental tobacco smoke (ETS), and World Health Organisation (WHO) guidance notes that these policies are only successful if there is full and proper enforcement. We aimed to investigate the problem of resistance to smoking restrictions and specifically compliance with smoke-free policy. We hypothesised that an explanation for non-compliance would lie in a measurable difference between the smoking behaviours of compliant and non-compliant smokers, specifically that non-compliance would be associated with nicotine dependence and different reasons for smoking. Methods We conducted a questionnaire-based, descriptive, cross-sectional study of hospital employees. Seven hundred and four members of staff at Addenbrooke's Hospital, Cambridge, UK, completed the questionnaire, of whom 101 were smokers. Comparison between compliant and non-compliant smokers was made based on calculated scores for the Fagerström test and the Horn-Waingrow scale, and level of agreement with questions about attitudes. For ordinal data we used a linear-by-linear association test. For non-parametric independent variables we used the Mann-Whitney test and for associations between categorical variables we used the chi-squared test. Results The demographic composition of respondents corresponded with the hospital's working population in gender, age, job profile and ethnicity. Sixty nine smokers reported they were compliant while 32 were non-compliant. Linear-by-linear association analysis of the compliant and non-compliant smokers' answers for the Fagerström test suggests association between compliance and nicotine dependence (p = 0.049). Mann-Whitney test analysis suggests there is a statistically significant difference between the reasons for smoking of the two groups: specifically that non-compliant smokers showed habitual smoking behaviour (p = 0.003). Overall, compliant and non-compliant smokers did not have significantly different attitudes towards the policy or their own health. Conclusion We demonstrate that those who smoke in this setting in contravention to a smoke-free policy do so neither for pleasure (promotion of positive affect) nor to avoid feeling low (reduction of negative affect); instead it is a resistant habit, which has little or no influence on the smoker's mood, and is determined in part by chemical dependence

    Changing assessment practice in engineering: how can understanding lecturer perspectives help?

    No full text
    Assessment in engineering disciplines is typically oriented to demonstrating competence in specific tasks. Even where assessments are intended to have a formative component, little priority may be given to feedback. Engineering departments are often criticized, by their students and by external quality reviewers, for paying insufficient attention to formative assessment. The e3an project set out to build a question bank of peer-reviewed questions for use within electrical and electronic engineering. As a part of this process, a number of engineers from disparate institutions were required to work together in teams, designing a range of assessments for their subject specialisms. The project team observed that lecturers were especially keen to develop formative assessment but that their understanding of what might be required varied considerably. This paper describes the various ways in which the processes of the project have engaged lecturers in actively identifying and developing their conceptions of teaching, learning and assessment in their subject. It reports on an interview study that was conducted with a selection of participants. It is concluded that lecturers' reflections on and understanding of assessment are closely related to the nature of the subject domain and that it is essential when attempting to improve assessment practice to start from the perspective of lecturers in the discipline

    Dynamics of Fundamental Matter in N=2* Yang-Mills Theory

    Full text link
    We study the dynamics of quenched fundamental matter in N=2\mathcal{N}=2^\ast supersymmetric large NN SU(N) Yang-Mills theory at zero temperature. Our tools for this study are probe D7-branes in the holographically dual N=2\mathcal{N}=2^\ast Pilch-Warner gravitational background. Previous work using D3-brane probes of this geometry has shown that it captures the physics of a special slice of the Coulomb branch moduli space of the gauge theory, where the NN constituent D3-branes form a dense one dimensional locus known as the enhancon, located deep in the infrared. Our present work shows how this physics is supplemented by the physics of dynamical flavours, revealed by the D7-branes embeddings we find. The Pilch-Warner background introduces new divergences into the D7-branes free energy, which we are able to remove with a single counterterm. We find a family of D7-brane embeddings in the geometry and discuss their properties. We study the physics of the quark condensate, constituent quark mass, and part of the meson spectrum. Notably, there is a special zero mass embedding that ends on the enhancon, which shows that while the geometry acts repulsively on the D7-branes, it does not do so in a way that produces spontaneous chiral symmetry breaking.Comment: 24 pages, 8 figures. Corrected typos, added comment about counterterm. To appear in JHE

    Electroconvulsive therapy in puerperal psychosis

    Get PDF
    Puerperal psychosis (PP) is an exuberant clinical syndrome with an estimated frequency of 1 case per 1,000 childbirths that has been most consistently associated with the bipolar disorders spectrum. Available evidence is scarce, namely regarding management and treatment. The authors present the clinical case of a 28 year-old first-time mother, with no psychiatric history, who developed a florid psychotic syndrome in the first weeks of puerperium. Due to lack of improvement following pharmacological treatment, electroconvulsive therapy (ECT) was applied, with substantial and quick response. In this context, the authors reviewed current literature on the use of ECT for the treatment of puerperal psychosis

    Flavor-symmetry Breaking with Charged Probes

    Full text link
    We discuss the recombination of brane/anti-brane pairs carrying D3D3 brane charge in AdS5×S5AdS_5 \times S^5. These configurations are dual to co-dimension one defects in the N=4{\cal N}=4 super-Yang-Mills description. Due to their D3D3 charge, these defects are actually domain walls in the dual gauge theory, interpolating between vacua of different gauge symmetry. A pair of unjoined defects each carry localized (2+1)(2+1) dimensional fermions and possess a global U(N)×U(N)U(N)\times U(N) flavor symmetry while the recombined brane/anti-brane pairs exhibit only a diagonal U(N). We study the thermodynamics of this flavor-symmetry breaking under the influence of external magnetic field.Comment: 21 pages, 10 figure

    Synthetic biology routes to bio-artificial intelligence

    Get PDF
    The design of synthetic gene networks (SGNs) has advanced to the extent that novel genetic circuits are now being tested for their ability to recapitulate archetypal learning behaviours first defined in the fields of machine and animal learning. Here, we discuss the biological implementation of a perceptron algorithm for linear classification of input data. An expansion of this biological design that encompasses cellular 'teachers' and 'students' is also examined. We also discuss implementation of Pavlovian associative learning using SGNs and present an example of such a scheme and in silico simulation of its performance. In addition to designed SGNs, we also consider the option to establish conditions in which a population of SGNs can evolve diversity in order to better contend with complex input data. Finally, we compare recent ethical concerns in the field of artificial intelligence (AI) and the future challenges raised by bio-artificial intelligence (BI)

    Magnetized Domain Walls in the Deconfined Sakai-Sugimoto Model at Finite Baryon Density

    Get PDF
    The magnetized pure pion gradient (5ϕ\mathcal{5}\phi) phase in the deconfined Sakai-Sugimoto model is explored at zero and finite temperature. We found that the temperature has very small effects on the phase. The thermodynamical properties of the phase shows that the excitations behave like a scalar solitonic free particles. By comparing the free energy of the pion gradient phase to the competing multiquark-pion gradient (MQ-5ϕ\mathcal{5}\phi) phase, it becomes apparent that the pure pion gradient is less thermodynamically preferred than the MQ-5ϕ\mathcal{5}\phi phase. However, in the parameter space where the baryonic chemical potential is smaller than the onset value of the multiquark, the dominating magnetized nuclear matter is the pion gradient phase.Comment: 20 pages, 9 figure
    corecore