380 research outputs found
Propagation of the surface plasmon polaritons through gradient index and periodic structures
We study the propagation of surface electromagnetic waves along the metallic
surface covered by various layered dielectric structures. We show that strong
radiative losses typical for the scattering of the surface wave can be
considerably suppressed when single dielectric step is substituted by gradient
index or periodic layered structure
Non-minimal Wu-Yang wormhole
We discuss exact solutions of three-parameter non-minimal Einstein-Yang-Mills
model, which describe the wormholes of a new type. These wormholes are
considered to be supported by SU(2)-symmetric Yang-Mills field, non-minimally
coupled to gravity, the Wu-Yang ansatz for the gauge field being used. We
distinguish between regular solutions, describing traversable non-minimal
Wu-Yang wormholes, and black wormholes possessing one or two event horizons.
The relation between the asymptotic mass of the regular traversable Wu-Yang
wormhole and its throat radius is analysed.Comment: 9 pages, 2 figures, typos corrected, 2 references adde
Non-minimal Einstein-Yang-Mills-Higgs theory: Associated, color and color-acoustic metrics for the Wu-Yang monopole model
We discuss a non-minimal Einstein-Yang-Mills-Higgs model with uniaxial
anisotropy in the group space associated with the Higgs field. We apply this
theory to the problem of propagation of color and color-acoustic waves in the
gravitational background related to the non-minimal regular Wu-Yang monopole.Comment: 14 pages, no figure
Multimode hybrid gold-silicon nanoantennas for tailored nanoscale optical confinement
High-index dielectric nanoantennas, which provide an interplay between electric and magnetic modes, have been widely used as building blocks for a variety of devices and metasurfaces, both in linear and nonlinear regimes. Here, we investigate hybrid metal-semiconductor nanoantennas, consisting of a multimode silicon nanopillar core coated with a gold layer, that offer an enhanced degree of control over the mode selection and confinement, and emission of light on the nanoscale exploiting high-order electric and magnetic resonances. Cathodoluminescence spectra revealed a multitude of resonant modes supported by the nanoantennas due to hybridization of the Mie resonances of the core and the plasmonic resonances of the shell. Eigenmode analysis revealed the modes that exhibit enhanced field localization at the gold interface, together with high confinement within the nanopillar volume. Consequently, this architecture provides a flexible means of engineering nanoscale components with tailored optical modes and field confinement for a plethora of applications, including sensing, hot-electron photodetection and nanophotonics with cylindrical vector beams.Peer ReviewedPostprint (published version
Mode Engineering in Large Arrays of Coupled Plasmonic–Dielectric Nanoantennas
Strong electromagnetic field confinement and enhancement can be readily achieved in plasmonic nanoantennas, however, this is considerably more difficult to realize over large areas, which is essential for many applications. Here, dispersion engineering in plasmonic metamaterials is applied to successfully develop and demonstrate a coupled array of plasmonic–dielectric nanoantennas offering an ultrahigh density of electromagnetic hot spots (10 cm ) over macroscopic, centimeter scale areas. The hetero-metamaterial is formed by a highly ordered array of vertically standing plasmonic dipolar antennas with a ZnO gap and fabricated using a scalable electrodeposition technique. It supports a complex modal structure, including guided, surface and gap modes, which offers rich opportunities, frequently beyond the local effective medium theory, with optical properties that can be easily controlled and defined at the fabrication stage. This metamaterial platform can be used in a wide variety of applications, including hot-electron generation, nanoscale light sources, sensors, as well as nonlinear and memristive devices. 11 −
Axion-induced oscillations of cooperative electric field in a cosmic magneto-active plasma
We consider one cosmological application of an axionic extension of the
Maxwell-Vlasov theory, which describes axionically induced oscillatory regime
in the state of global magnetic field evolving in the anisotropic expanding
(early) universe. We show that the cooperative electric field in the
relativistic plasma, being coupled to the pseudoscalar (axion) and global
magnetic fields, plays the role of a regulator in this three-level system; in
particular, the cooperative (Vlasov) electric field converts the regime of
anomalous growth of the pseudoscalar field, caused by the axion-photon coupling
at the inflationary epoch of the universe expansion, into an oscillatory regime
with finite density of relic axions. We analyze solutions to the dispersion
equations for the axionically induced cooperative oscillations of the electric
field in the relativistic plasma.Comment: 7 pages, misprints correcte
Nonminimal isotropic cosmological model with Yang-Mills and Higgs fields
We establish a nonminimal Einstein-Yang-Mills-Higgs model, which contains six
coupling parameters. First three parameters relate to the nonminimal coupling
of non-Abelian gauge field and gravity field, two parameters describe the
so-called derivative nonminimal coupling of scalar multiplet with gravity
field, and the sixth parameter introduces the standard coupling of scalar field
with Ricci scalar. The formulated six-parameter nonminimal
Einstein-Yang-Mills-Higgs model is applied to cosmology. We show that there
exists a unique exact cosmological solution of the de Sitter type for a special
choice of the coupling parameters. The nonminimally extended Yang-Mills and
Higgs equations are satisfied for arbitrary gauge and scalar fields, when the
coupling parameters are specifically related to the curvature constant of the
isotropic spacetime. Basing on this special exact solution we discuss the
problem of a hidden anisotropy of the Yang-Mills field, and give an explicit
example, when the nonminimal coupling effectively screens the anisotropy
induced by the Yang-Mills field and thus restores the isotropy of the model.Comment: 15 pages, revised version accepted to Int. J. Mod. Phys. D, typos
correcte
Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform
Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices
Circular Dichroism Enhancement in Plasmonic Nanorod Metamaterials
Optical activity is a fundamental phenomenon originating from the chiral
nature of crystals and molecules. While intrinsic chiroptical responses of
ordinary chiral materials to circularly polarized light are relatively weak,
they can be enhanced by specially tailored nanostructures. Here, nanorod
metamaterials, comprising a dense array of vertically aligned gold nanorods, is
shown to provide significant enhancement of the circular dichroism response of
an embedded material. A nanorod composite, acting as an artificial uniaxial
crystal, is filled with chiral mercury sulfide nanocrystals embedded in a
transparent polymer. The nanorod based metamaterial, being inherently achiral,
enables optical activity enhancement or suppression. Unique properties of
inherently achiral structures to tailor optical activities pave a way for
flexible characterization of optical activity of molecules and
nanocrystal-based compounds
- …