95 research outputs found

    "A New Light from Old Wisdoms : Alternative Estimation Methods of Simultaneous Equations with Possibly Many Instruments"

    Get PDF
    We compare four dffierent estimation methods for a coefficient of a linear structural equation with instrumental variables. As the classical methods we consider the limited information maximum likelihood (LIML) estimator and the two-stage least squares (TSLS) estimator, and as the semi-parametric estimation methods we consider the maximum emirical likelihood (MEL) estimator and the generalized method of moments (GMM) (or the estimating equation) estimator. We prove several theorems on the asymptotic optimality of the LIML estimator when the number of instruments is large, which are new as well as old, and we relate them to the results in some recent studies. Tables and figures of the distribution functions of four estimators are given for enough values of the parameters to cover most of interest. We have found that the LIML estimator has good performance when the number of instruments is large, that is, the micro-econometric models with many instruments in the terminology of recent econometric literature.

    "On the Asymptotic Optimality of the LIML Estimator with Possibly Many Instruments"

    Get PDF
    We consider the estimation of the coefficients of a linear structural equation in a simultaneous equation system when there are many instrumental variables. We derive some asymptotic properties of the limited information maximum likelihood (LIML) estimator when the number of instruments is large; some of these results are new and we relate them to results in some recent studies. We have found that the variance of the LIML estimator and its modifications often attain the asymptotic lower bound when the number of instruments is large and the disturbance terms are not necessarily normally distributed, that is, for the micro-econometric models with many instruments.

    Quantum melting of charge ice and non-Fermi-liquid behavior: An exact solution for the extended Falicov-Kimball model in the ice-rule limit

    Full text link
    An exact solution is obtained for a model of itinerant electrons coupled to ice-rule variables on the tetrahedron Husimi cactus, an analogue of the Bethe lattice of corner-sharing tetrahedra. It reveals a quantum critical point with the emergence of non-Fermi-liquid behavior in melting of the "charge ice" insulator. The electronic structure is compared with the numerical results for the pyrochlore-lattice model to elucidate the physics of electron systems interacting with the tetrahedron ice rule.Comment: 5 pages, 4 figure

    Metal-insulator transition caused by the coupling to localized charge-frustrated systems under ice-rule local constraint

    Full text link
    We report the results of our theoretical and numerical study on electronic and transport properties of fermion systems with charge frustration. We consider an extended Falicov-Kimball model in which itinerant spinless fermions interact repulsively by U with localized particles whose distribution satisfies a local constraint under geometrical frustration, the so-called ice rule. We numerically calculate the density of states, optical conductivity, and inverse participation ratio for the models on the pyrochlore, checkerboard, and kagome lattices, and discuss the nature of metal-insulator transitions at commensurate fillings. As a result, we show that the ice-rule local constraint leads to several universal features in the electronic structure; a charge gap opens at a considerably small U compared to the bandwidth, and the energy spectrum approaches a characteristic form in the large U limit, that is, the noninteracting tight-binding form in one dimension or the δ\delta-functional peak. In the large U region, the itinerant fermions are confined in the macroscopically-degenerate ice-rule configurations, which consist of a bunch of one-dimensional loops: We call this insulating state the charge ice. On the other hand, transport properties are much affected by the geometry and dimensionality of lattices; e.g., the pyrochlore lattice model exhibits a transition from a metallic to the charge-ice insulating state by increasing U, while the checkerboard lattice model appears to show Anderson localization before opening a gap. Meanwhile, in the kagome lattice case, we do not obtain clear evidence of Anderson localization. Our results elucidate the universality and diversity of phase transitions to the charge-ice insulator in fully frustrated lattices.Comment: 16 pages, 17 figure

    Noncoplanar spin canting in lightly-doped ferromagnetic Kondo lattice model on a triangular lattice

    Full text link
    Effect of the coupling to mobile carriers on the 120^\circ antiferromagnetic state is investigated in a ferromagnetic Kondo lattice model on a frustrated triangular lattice. Using a variational calculation for various spin orderings up to a four-site unit cell, we identify the ground-state phase diagram with focusing on the lightly-doped region. We find that an electron doping from the band bottom immediately destabilizes a 120^\circ coplanar antiferromagnetic order and induces a noncoplanar three-sublattice ordering accompanied by an intervening phase separation. This noncoplanar phase has an umbrella-type spin configuration with a net magnetic moment and a finite spin scalar chirality. This spin-canting state emerges in competition between the antiferromagnetic superexchange interaction and the ferromagnetic double-exchange interaction under geometrical frustration. In contrast, a hole doping from the band top retains the 120^\circ-ordered state up to a finite doping concentration and does not lead to a noncolpanar ordering.Comment: 6 pages, 4 figures, accepted for publication in J. Phys.: Conf. Se

    Critical property of spin-glass transition in a bond-disordered classical antiferromagnetic Heisenberg model with a biquadratic interaction

    Full text link
    Motivated by puzzling spin-glass behaviors observed in many pyrochlore-based magnets, effects of magnetoelastic coupling to local lattice distortions were recently studied by the authors for a bond-disordered antiferromagnet on a pyrochlore lattice [Phys. Rev. Lett. 107, 047204 (2011)]. Here, we extend the analyses with focusing on the critical property of the spin-glass transition which occurs concomitantly with a nematic transition. Finite-size scaling analyses are performed up to a larger system size with 8192 spins to estimate the transition temperature and critical exponents. The exponents are compared with those in the absence of the magnetoelastic coupling and with those for the canonical spin-glass systems. We also discuss the temperature dependence of the specific heat in comparison with that in canonical spin-glass systems as well as an experimental result.Comment: 4 pages, 2 figures, proceedings for LT2

    Thermally-induced magnetic phases in an Ising spin Kondo lattice model on a kagome lattice at 1/3-filling

    Full text link
    Numerical investigation on the thermodynamic properties of an Ising spin Kondo lattice model on a kagome lattice is reported. By using Monte Carlo simulation, we investigated the magnetic phases at 1/3-filling. We identified two successive transitions from high-temperature paramagnetic state to a Kosterlitz-Thouless-like phase in an intermediate temperature range and to a partially disordered phase at a lower temperature. The partially disordered state is characterized by coexistence of antiferromagnetic hexagons and paramagnetic sites with period 3×3\sqrt3 \times \sqrt3. We compare the results with those for the triangular lattice case.Comment: 4 pages, 2 figure

    Effects of CYP46A1 inhibition on long-term-depression in hippocampal slices ex vivo and 24S-hydroxycholesterol levels in mice in vivo

    Get PDF
    The manipulation of cholesterol and its metabolites has been hypothesized to be therapeutically beneficial for mood disorders, neurodegenerative disorders, and epilepsies. A major regulator of cholesterol clearance and turnover in the central nervous system is CYP46A1, a brain enriched enzyme responsible for metabolism of cholesterol into 24S-hydroxycholesterol. Inhibition of this enzyme may negatively modulate NMDARs as 24S-hydroxycholesterol was shown to enhance NMDAR function. In addition, alterations of local cholesterol or other changes mediated by CYP46A1 activity could have important influences on central nervous system function. Here we demonstrate that humans and mice display brain region specific and similar CYP46A1 and 24S-hydroxycholesterol distribution. Treatment with distinct classes of CYP46A1 inhibitors led to central 24S-hydroxycholesterol reductio

    Semiclassical Analysis of Extended Dynamical Mean Field Equations

    Full text link
    The extended Dynamical Mean Field Equations (EDMFT) are analyzed using semiclassical methods for a model describing an interacting fermi-bose system. We compare the semiclassical approach with the exact QMC (Quantum Montecarlo) method. We found the transition to an ordered state to be of the first order for any dimension below four.Comment: RevTex, 39 pages, 16 figures; Appendix C added, typos correcte
    corecore