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1. Introduction

Over the past three decades there has been increasing interest and research on

the estimation of one structural equation in a system of simultaneous equations

when the number of instruments (the number of exogenous variables excluded from

the structural equation), say K2, is large relative to the sample size, say n. The

relevance of such models is due to collection of large data sets and the development

of computational equipment capable of analysis of such data sets. One empirical

example of this kind often cited in the econometric literature is Angrist and Krueger

(1991) ; there has been some discussion by Bound et al. (1995) since then. Asymp-

totic distributions of estimators and test criteria are developed on the basis that both

K2 → ∞ and n → ∞. These asymptotic distributions are used as approximations

to the distributions of the estimators and criteria when K2 and n are large.

Bekker (1994) has written ”To my knowledge a first mention of such a parame-

ter sequence was made, with respect to the linear functional relationship model, in

Anderson (1976 p.34). This work was extended to simultaneous equations by Kunit-

omo (1980) and Morimune (1983), who gave asymptotic expansions for the case of

a single explanatory endogenous variable.” Following Bekker there have been many

studies of the behavior of estimators of the coefficients of a single equation when K2

and n are large.

The main purpose of the present paper is to show that one estimator, the Limited

Information Maximum Likelihood (LIML) estimator, has some optimum properties

when K2 and n are large. As background we state and derive some asymptotic

distributions of the LIML and Two-Stage Least Squares (TSLS) estimators as K2 →
∞ and n → ∞. Some of these results are improvements on Anderson (1976),

Kunitomo (1980), Morimune (1983) and Bekker (1994), several of which are in the

literature, and some results are new. They are presented in a uniform notation.

In addition to the LIML and TSLS estimators there are other instrumental vari-

ables (IV) methods. See Anderson, Kunitomo, and Sawa (1982) on the studies of

their finite sample properties, for instance. Several semiparametric estimation meth-
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ods have been developed including the generalized method of moments (GMM) esti-

mation and the maximum empirical likelihood (MEL) method. (See Hayashi (2000)

for instance.) However, it has been recently recognized that the classical methods

have some advantages in microeconometric situations with many instruments. We

call the case of many instruments the large-K2 asymptotic theory.

In this paper we shall give the results on the asymptotic properties of the LIML

estimator when the number of instruments is large. The TSLS and the GMM

estimators lose even consistency in some of these situations. Our results on the

asymptotic properties and optimality of the LIML estimator and its variants give

new interpretations of the numerical information of the finite sample properties

and some guidance on the use of alternative estimation methods in simultaneous

equations and micro-econometric models with many instruments. There is a growing

literature on the problem of many instruments in econometric models. We shall try

to relate our results to some recent studies, including Donald and Newey (2001),

Hahn (2002), Stock and Yogo (2005), Hansen, Hausman, and Newey (2004, 2006),

Chao and Swanson (2005), and Bekker and Ploeg (2005).

In Section 2 we state the formulation of a simple linear structural model and the

alternative estimation methods of unknown parameters in simultaneous equation

models with possibly many instruments. Then in Section 3 we develop the large-

K2 asymptotics or the many instruments asymptotics and give some results on

the asymptotic normality of the LIML estimator when n and K2 are large. These

results agree with the finite sample properties of alternative estimation methods

and one application on t-ratios will be discussed. (We give a small number of

figures and tables in Appendix. But the detail of the finite sample properties of

the alternative estimators are discussed in Anderson, Kunitomo and Matsushita

(2005), for instance.) In Section 4 we shall present new results on the asymptotic

optimality of the LIML estimator and show that it often attains the lower bound

of the asymptotic variance in a class of consistent estimators when the number of

instruments is large. Also we shall discuss a more general formulation of the models
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and relate our results to some recent ones including Hansen et al. (2006) 1 in

particular. Then brief concluding remarks will be given in Section 5. The proof of

our theorems will be given in Section 6.

2. Alternative Estimation Methods in Structural Equation

Models with Possibly Many Instruments

In Section 2 and Section 3 we consider the estimation problem of a structural

equation in the classical linear simultaneous equations framework 2 . Let a single

linear structural equation in an econometric model be

y1i = β
′

2y2i + γ
′

1z1i + ui (i = 1, · · · , n),(2.1)

where y1i and y2i are a scalar and a vector of G2 endogenous variables, z1i is a vector

of K1 (included) exogenous variables in (2.1), γ1 and β2 are K1 × 1 and G2 × 1

vectors of unknown parameters, and u1, · · · , un are independent disturbance terms

with E(ui) = 0 and E(u2
i ) = σ2 (i = 1, · · · , n). We assume that (2.1) is one equation

in a system of 1 + G2 equations in 1 + G2 endogenous variables y
′
i = (y1i, y

′
2i)

′
. The

reduced form of the model is

Y = ZΠn + V ,(2.2)

where Y = (y
′
i) is the n× (1+G2) matrix of endogenous variables, Z = (Z1,Z2n) =

(z
(n)′

i ) is the n × Kn matrix of K1 + K2n instrumental vectors z
(n)
i = (z

′
1i, z

(n)′

2i )
′
,

V = (v
′
i) is the n × (1 + G2) matrix of disturbances,

Πn =

 π11 Π12

π
(n)
21 Π

(n)
22



1 This is a revision of Hansen et al. (2004) after the second version of the present paper was

written.
2 We intentionally include the standard classic situation and state our results mainly because

they are clear. Nonetheless a generalization of the formulation and the corresponding results will

be discussed in Section 4.2.
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is the (K1 + K2n) × (1 + G2) matrix of coefficients, and

E(viv
′

i) = Ω =

 ω11 ω
′
2

ω2 Ω22

 .

The vector of Kn (= K1 + K2n, n > 2) instrumental variables z
(n)
i satisfies the

orthogonality condition E [uiz
(n)
i ] = 0 (i = 1, · · · , n). The relation between (2.1) and

(2.2) is  π11 Π12

π
(n)
21 Π

(n)
22


 1

−β2

 =

 γ1

0

 ,(2.3)

ui = (1,−β
′

2)vi = β
′
vi, and

σ2 = (1,−β
′

2)

 ω11 ω
′
2

ω2 Ω22


 1

−β1

 = β
′
Ωβ ,

where β
′
= (1,−β

′

2).

Let Π2n = (π
(n)
21 ,Π

(n)
22 ) be a K2n × (1 + G2) matrix of coefficients. Define the

(1 + G2) × (1 + G2) matrices by

G = Y
′
Z2.1A

−1
22.1Z

′

2.1Y = P
′

2A22.1P2 ,(2.4)

and

H = Y
′ (

In − Z(Z
′
Z)−1Z

′)
Y ,(2.5)

where A22.1 = Z
′
2.1Z2.1, Z2.1 = Z2n − Z1A

−1
11 A12, P2 = A−1

22.1Z
′
2.1Y,

Z1 =


z

′
11

...

z
′
1n

 ,Z2n =


z

(n)′

21

...

z
(n)′

2n

 ,(2.6)

and

A =

 Z
′
1

Z
′
2n

 (Z1,Z2n) =

 A11 A12

A21 A22

(2.7)

is a nonsingular matrix (a.s.). Then the LIML estimator β̂LI (= (1,−β̂
′

2.LI)
′
) of

β = (1,−β
′

2)
′
is the solution of

(
1

n
G − 1

qn

λnH)β̂LI = 0 ,(2.8)
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where qn = n − Kn (n > 2) and λn (n > 2) is the smallest root of

|1
n
G − l

1

qn

H| = 0 .(2.9)

The solution to (2.8) minimizes the variance ratio

L1n =
[
∑n

i=1 z
(n)′

i (y1i − γ
′
1z1i − β

′

2y2i)][
∑n

i=1 z
(n)
i z

(n)′

i ]−1[
∑n

i=1 z
(n)
i (y1i − γ

′
1z1i − β

′

2y2i)]∑n
i=1(y1i − γ

′
1z1i − β

′

2y2i)2
.

(2.10)

The TSLS estimator β̂TS (= (1,−β̂
′

2.TS)
′
) of β = (1,−β

′

2)
′
is given by

Y
′

2Z2.1A
−1
22.1Z

′

2.1Y

 1

−β̂2.TS

 = 0 .(2.11)

It minimizes the numerator of the variance ratio (2.10). The LIML and the TSLS

estimators of γ1 are

γ̂1 = (Z
′

1Z1)
−1Z

′

1Yβ̂ ,(2.12)

where β̂ is β̂LI or β̂TS, respectively. The LIML and TSLS estimators and their

properties were originally developed by Anderson and Rubin (1949, 1950). See also

Anderson (2005).

3 Asymptotic Properties of the LIML Estimator

with Many Instruments

3.1 Asymptotic Normality of the LIML Estimator

We state the limiting distribution of the LIML estimator under a set of alternative

assumptions when K2n and Π2n can depend on n and n → ∞. We first consider

the case when

(I)
K2n

n
−→ c (0 ≤ c < 1),

(II)
1

n
Π

(n)′

22 A22.1Π
(n)
22

p−→ Φ22.1 ,

where Φ22.1 is a nonsingular constant matrix.
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Condition (I) implies that the number of coefficient parameters is proportional

to the number of observations. Because we want to estimate the covariance matrix

of v
(n)
i (i = 1, · · · , n), we want c < 1. Then (I) implies qn −→ ∞ as n −→

∞. Condition (II) controls the noncentrality (or concentration) parameter to be

proportional to the sample size. Since K2n grows, it may be called the case of many

instruments. These conditions define the maximal rates of growth of the number of

incidental parameters.

We shall give our first result in Theorem 1 and Theorem 2. Although the present

formulation and Theorem1 are similar to the corresponding results reported in

Hansen et al. (2004) and Hasselt (2006), we shall give the proofs in Section 6

because the method of our proofs are relatively simple such that the underlying

assumptions are clear and the method of proof can be extended easily to the more

general cases as we shall discussed in Section 4.2 3 .

To state our results conveniently we transform vi to

w2i = (0, IG2)
[
I1+G2 −

1

σ2
Ωββ

′
]
vi(3.1)

= (0, IG2)
[
vi −

1

σ2
Cov(v, u)ui

]

and ui = β
′
vi. Then E(w2iui) = 0 and

E(w2iw
′

2i) =
1

σ2

[
Ωσ2 − Ωββ

′
Ω

]
22

,(3.2)

where [ · ]22 is the G2 × G2 lower right-hand corner of the matrix.

Theorem 1 : Let z
(n)
i , i = 1, 2, · · · , n, be a set of Kn×1 vectors (Kn = K1+K2n, n >

2). Let vi, i = 1, 2, · · · , n, be a set of (1 + G2) × 1 independent random vectors

independent of z
(n)
1 , · · · , z(n)

n such that E(vi) = 0 and E(viv
′
i) = Ω (a.s.), and the

third- and fourth-order moments of vi do not depend on i. Suppose that (I) and

(II) hold. In addition assume

(III)
1

n
max
1≤i≤n

∥Π(n)′

22 z∗in∥2 p−→ 0 ,

3 A consequence of our method is that the proofs are self-contained.
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where z∗in is the i-th row vector of Z2.1 = Z2n − Z1(Z
′
1Z1)

−1Z
′
1Z2n.

(i) For c = 0,
√

n(β̂2.LI − β2)
d−→ N(0,Ψ∗) ,(3.3)

where Ψ∗ = σ2Φ−1
22.1 and σ2 = β

′
Ωβ .

(ii) For 0 < c < 1, define E(u2w2w
′
2)−σ2E(w2w

′
2) = Γ44.2. Suppose that E [∥vi∥6]

are bounded (i = 1, · · · , n) and there exist limits

(IV) Ξ3.2 =
[

1

1 − c

]
plim
n→∞

1

n
Π

(n)′

22

n∑
i=1

z∗in
[
p

(n)
ii − c

]
E(u2w

′

2) ,

(V) η =
[

1

1 − c

]2

plim
n→∞

1

n

n∑
i=1

[
p

(n)
ii − c

]2
,

where p
(n)
ii = (Z2.1A

−1
22.1Z

′
2.1)ii. Then

√
n(β̂2.LI − β2)

d−→ N(0,Ψ∗∗) ,(3.4)

where

Ψ∗∗ = σ2Φ−1
22.1 + Φ−1

22.1

{
c∗

[
Ωσ2 − Ωββ

′
Ω

]
22

(3.5)

+
[
(Ξ3.2 + Ξ

′

3.2) + ηΓ44.2

]}
Φ−1

22.1

and c∗ = c/(1 − c). If G2 = 1, then [Ωσ2 − Ωββ
′
Ω]22 = ω11ω22 − ω2

12 = |Ω| .

Corollary 1 : When vi (= (vji)) (i = 1, · · · , n; j = 1, · · · , G2 + 1) has an

elliptically contoured (EC) distribution 4 in Theorem 1, the fourth order mo-

ments E(vjivkivlivmi) = (1 + κ/3)(ωjkωlm + ωjlωkm + ωjmωkl) and E [(β
′
vi)

2viv
′
i] =

(1 + κ/3)(σ2Ω + 2Ωββ
′
Ω), where Ω = (ωjk), E(vjivki) = ωjk and κ is the kurtosis

4 The precise definition of elliptically contoured (EC) distribution has been given by Section

2.7 of Anderson (2003). The standardized fourth order cumulant of any linear combination of the

random vector X followed by the EC distribution, say, γX, is a constant

κ =
E [γ

′
(X − µ)]4

(E [γ′(X − µ)]2)2
− 3 ,

independent of γ and is known as the kurtosis of γ
′
X. The multivariate normal distribution is a

member of the EC class; the kurtosis of any normal distribution is 0.
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of EC(Ω). Then Γ44.2 = (κ/3)
[
Ωσ2 − Ωββ

′
Ω

]
22

and (3.5) is given by

Ψ∗∗ = σ2Φ−1
22.1 + (c∗ +

1

3
ηκ)Φ−1

22.1

[
Ωσ2 − Ωββ

′
Ω

]
22

Φ−1
22.1 .(3.6)

Instead of making an assumption on the distribution of disturbance terms except

the existence of their moments, alternatively we assume

(VI) plim
n→∞

1

n

n∑
i=1

[
p

(n)
ii − c

]2
= 0 ,

where p
(n)
ii = (Z2.1A

−1
22.1Z

′
2.1)ii. The typical example for Condition (VI) is the case

when we have dummy variables which have 1 or −1 in their all components so that

(1/n)A22.1 = IK2n and p
(n)
ii = K2n/n (i = 1, · · · , n).

Condition (VI) is the same as η = 0 in Condition (V), which in turn implies

Ξ3.2 = O in Condition (IV) by the Cauchy-Schwarz inequality using Conditions (II)

and (VI). These consequences of Condition (VI) imply the following theorem :

Theorem 2 : For 0 ≤ c < 1 assume Conditions (I), (II), (III), (VI) and assume

that E [∥vi∥6] (i = 1, · · · , n) is bounded. Then

√
n(β̂2.LI − β2)

d−→ N(0,Ψ∗∗) ,(3.7)

where

Ψ∗∗ = σ2Φ−1
22.1 + c∗Φ

−1
22.1

[
Ωσ2 − Ωββ

′
Ω

]
22

Φ−1
22.1(3.8)

and c∗ = c/(1 − c).

Corollary 2 : Suppose z
(n)
1 , · · · , z(n)

n are independently distributed with E(z
(n)
i z

(n)′

i ) =

M = (mij), (1/n)aij
p→ mij (aij = (A)ij) and V ar[z

(n)′

i M−1z
(n)
i ] = o(K2

n). Then

(3.7) and (3.8) hold without Condition (VI) in Theorem 2.

The asymptotic properties of the LIML estimator hold when K2n increases as

n → ∞ and K2n/n → 0. In this case the limiting distribution of the LIML estimator

can be different from that of the TSLS estimator. (The proof of Theorem 3 will be

given in Section 6.)
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Theorem 3 : Let {vi, z
(n)
i ; i = 1, · · · , n} be a set of independent random vec-

tors. Assume that (2.1) and (2.2) hold with E(vi|zi) = 0 (a.s.) and E(viv
′
i|z

(n)
i ) =

Ω
(n)
i (a.s.) is a function of z

(n)
i , say, Ωi[n, z

(n)
i ]. The further assumptions on (vi, z

(n)
i ) (vi =

(vji)) are that E(v4
ji|z

(n)
i ) are bounded, there exists a constant matrix Ω such that

√
n∥Ω(n)

i − Ω∥ is bounded and σ2 = β
′
Ωβ > 0 . Suppose

(I
′
)

K2n

nη
−→ c (0 ≤ η < 1, 0 < c < ∞),

(II)
1

n
Π

(n)′

22 A22.1Π
(n)
22

p−→ Φ22.1 ,

(III)
1

n
max
1≤i≤n

∥Π(n)′

22 z∗in∥2 p−→ 0 ,

where Φ22.1 is a nonsingular constant matrix and z∗
′

in is the i-th row vector of Z2.1 =

Z2n − Z1(Z
′
1Z1)

−1Z
′
1Z2n.

(i) Then for the LIML estimator when 0 ≤ η < 1,

√
n(β̂2.LI − β2)

d−→ N(0, σ2Φ−1
22.1) ,(3.9)

where σ2 = β
′
Ωβ.

(ii) For the TSLS estimator when 1/2 < η < 1,

n1−η(β̂2.TS − β2)
p−→ Φ−1

22.1 c(ω21,Ω22)β ,(3.10)

when η = 1/2,

√
n(β̂2.TS − β2)

d−→ N
[
cΦ−1

22.1(ω21,Ω22)β, σ2Φ−1
22.1

]
,(3.11)

where (ω21,Ω22) is the G2 × (1 + G2) lower submatrix of Ω. When 0 ≤ η < 1/2,

√
n(β̂2.TS − β2)

d−→ N(0, σ2Φ−1
22.1) .(3.12)

It is possible to interpret the standard large sample theory as a special case of

Theorem 3. The asymptotic property of the LIML and TSLS estimators for γ1 can

be derived from Theorem 1. Donald and Newey (2001) (in their Lemma A.6) has

investigated the asymptotic properties of the LIML estimator when K2n/n −→ 0.

Also Stock and Yogo (2005), and Hansen et al. (2004) have discussed the asymptotic
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properties of the GMM estimators in some cases of the large-K2 theory when 0 <

η < 1/2. In this case, however, the asymptotic lower bound of the covariance matrix

is the same as in the case of the large sample asymptotic theory as we shall see in

Section 4.

3.2 On the Asymptotic Variance and t-Ratios

There is a notable difference between the results in Theorem 1 and Theorem 2,

that is, the asymptotic variance depends on the 3rd and 4th order moments of the

disturbance terms in the former. The finite sample properties of the LIML esti-

mator have been investigated by Anderson, Kunitomo and Matsushita (2005) in

a systematic way and as typical examples we present only eight figures (Figures

1A-8A) in Appendix when α = 0.5, 1.0 and G2 = 1. We have used the numeri-

cal estimation of the cumulative distribution function (cdf) of the LIML estimator

based on the simulation and we have enough numerical accuracy in most cases.

See Anderson et al. (2005) for the details of the numerical computation method.

The key parameters in figures and tables are K2 (or K2n), n − K (or n − Kn),

α = [ω22/|Ω|1/2](β2 − ω12/ω22) (Ω = (ωij)) and δ2 = Π
(n)′

22 A22.1Π
(n)
22 /ω22. See An-

derson et al. (1982) for the details of these notations.

The figures (Figures 1A-8A) show the estimated cdf of the LIML estimator in

the standard form, that is,

√
n

σ
Φ

1/2
22.1

(
β̂2.LI − β2

)
.(3.13)

By using (3.3) the limiting distributions of the LIML estimators are N(0, 1) in

the large sample asymptotics and they are denoted by ”o”. By using (3.8) the

corresponding limiting distributions of the LIML estimators in the large K2 asymp-

totics are N(0, a) (a = Ψ∗−1Ψ∗∗, a ≥ 1), which are denoted by large-K-normal in

Figures 1A-8A, and they are traced by the dashed curves. In Figures 3A-4A and

7A-8A we also have the approximations based on the variance formula (3.5) with

the third and fourth order moments of disturbance terms, which are denoted by

large-K-nonnormal and traced by ”x”.
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From these figures we have found that the effects of many instruments on the

cdf of the LIML estimator are significant and the approximations based on the large

sample asymptotics are often inferior. At the same time we also have found that

the effects of non-normality of disturbance terms on the cdf of the LIML estimator

are often very small. (The dashed curves and x are almost identical.)

One important application of the asymptotic variance is to construct a t-ratio

for testing a hypothesis on the coefficients. We can use the asymptotic variance

of the LIML estimator given by (3.5) or (3.8) replaced by its estimator. (We have

used P2 for Π2n, (1/qn)H for Ω and the sample moments from residuals for σ2 and

E(u2w2), for instance.) We have investigated this problem and as typical examples

we give four tables (Tables 1B-4B) on the cdfs of t-ratios

t(β̂2.LI) =

√
n(β̂2.LI − β2)

s(β̂2.LI)
,(3.14)

which is constructed by the LIML estimation, where s2(β̂2.LI) is the estimator of the

variance. The formulas (3.3),(3.5), (3.6) and (3.8) are used. (Matsushita (2006) has

investigated the finite sample properties of alternative t-ratios in detail and derived

their asymptotic expansions of their distribution functions.) From these tables we

have found that the effect of many instruments on the cdf of the null distributions

of t-ratios are often significant. The approximations based on the large sample

asymptotics are often inferior. At the same time we also have found that the effects

of non-normality of disturbance terms on the null-distributions of the t-ratios are

often small, that is, the differences between the effects of (3.5) in Theorem 1 and

(3.8) in Theorem 2 are small for practical purposes.

Bekker (1994) derived the asymptotic variance formula (3.8) for the LIML es-

timator under the condition that the disturbance terms are normally distributed.

It is identical to the asymptotic covariance matrix of the LIML estimator in the

large-K2 asymptotics reported by Kunitomo (1982). From our investigations it may

be advisable to use (3.8) for statistical inferences on the structural coefficients even

under the cases when the disturbances are not normally distributed for practical

purposes.
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4 Asymptotic Optimality of the LIML Estimator

4.1 Main Result

For the estimation of the vector of structural parameters β, it seems natural to

consider procedures based on two (1 + G2)× (1 + G2) matrices G and H. We shall

consider a class of estimators which are functions of these matrices. The typical

examples of this class are the OLS estimator, the TSLS estimator, and the modified

versions of the LIML estimator including the one proposed by Fuller (1977). Then

we have a new result on the asymptotic optimality of the LIML estimator. We shall

discuss the modified version of LIML estimator which attains the lower bound of

the asymptotic covariance under alternative assumptions in Section 4.2. The proof

of Theorem 4 will be given in Section 6.

Theorem 4 : Assume that (2.1) and (2.2) hold. Define a class of consistent

estimators for β2 by

β̂2 = ϕ(
1

n
G,

1

qn

H) ,(4.1)

where ϕ is continuously differentiable and its derivatives are bounded at the proba-

bility limits of G and H as K2n → ∞ and n → ∞ and 0 ≤ c < 1. Then under the

assumptions of the case (i) of Theorem 1, Corollary 1 or Theorem 2,

√
n(β̂2 − β2)

d−→ N(0,Ψ) ,(4.2)

where

Ψ ≥ Ψ∗ (or Ψ∗∗) ,(4.3)

and Ψ∗ (or Ψ∗∗ ) is given by (3.3), (3.6) or (3.8), respectively.

When the distribution of V is normal N(0,Ω) and Z is exogenous, P = (Z
′
Z)−1Z

′
Y

and H = Y
′
[In − Z(Z

′
Z)−1Z

′
]Y are a sufficient set of statistics for Πn and Ω, the

parameters of a model. When Kn is fixed, it is known that of all consistent esti-

mators of β2 the LIML estimator suitably normalized has the minimum asymptotic

variance and the optimality of β̂2.LI extends to the class of all consistent estimators

13



including the MEL estimator (provided that it is consistent), not only the form of

(4.1) in this case. When Kn is dependent on n, however, there is a further problem

with many incidental parameters.

The above theorems are the generalized versions of the results given by Kunitomo

(1982) and Theorem 3.1 of Kunitomo (1987). Furthermore, Kunitomo (1987) has

investigated the higher order efficiency property of the LIML estimator when G2 = 1,

0 ≤ c < 1 and the disturbances are normally distributed. Chao and Swanson (2005)

recently have investigated the consistency issue of instrumental variables methods

when K2n is dependent on n and the disturbances are not necessarily normally

distributed. In the large-K2 asymptotic theory with 0 < c < 1, the LIML estimator

is asymptotically efficient and attains the lower bound of the variance-covariance

matrix, which is strictly larger than the information matrix and the asymptotic

Cramér-Rao lower bound under a set of assumptions, while both the TSLS and

the GMM estimators are inconsistent. This is a non-regular situation because the

number of incidental parameters increases as K2n increases in the simultaneous

equation models 5 .

4.2 A general formulation of the asymptotic optimality

We shall consider a model with the single structural equation (2.1) and a nonlinear

replacement for the last G2 columns of the reduced form (2.2). We treat (2.1) and

Y2 = Π
(n)
2 (Z) + V2 ,(4.4)

where Π
(n)
2 (Z) = (π

′
2i(z

(n)
i )) is an n × G2 matrix, the i-th row of which π

′
2i(z

(n)
i )

depends on the Kn × 1 vector z
(n)
i (i = 1, · · · , n), V2 is a n × G2 matrix, v1 =

u + V2β2, and V = (v1,V2). When the reduced form equations (4.4) are linear,

(2.1) and (4.4) has a representation (2.2). In this formulation, Condition (II) is

5 As a non-trivial example, we take the bias-adjusted TSLS estimator by setting λn = K2n/n in

(2.8) and denote β̂2.BTS . Then the asymptotic variance of β̂2.BTS is greater than Φ∗ in Theorem

3 if 0 < c < 1 and
[
Ωββ

′
Ω

]
22

≥ 0.
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replaced by

(II
′
)

1

d2
n

Π
(n)
2 (Z)

′
Z2.1A

−1
22.1Z

′

2.1Π
(n)
2 (Z)

p−→ Φ22.1 ,

where Φ22.1 is a positive (constant) definite matrix and dn
p→ ∞ as n → ∞. We

replace (III) by

(III)
′ 1

d2
n

max
1≤i≤n

∥π2i(z
(n)
i )∥2 p−→ 0 .

A possible additional condition (due to nonlinearilty in (4.4)) is

(VIII)
1

qn

Π
(n)
2 (Z)

′ [
In − Z(Z

′
Z)−1Z

′]
Π

(n)
2 (Z)

p−→ O .

Condition (VIII) is automatically satisfied in the linear case. It is possible to weaken

this condition to some extent with more complications of the resulting analysis.

Three cases are considered. We have already investigated the first case of dn =

Op(n
1/2) and K2n = O(n) in Section 3. The asymptotic covariance of the LIML

estimator is given by (3.5) in Theorem 1 or (3.8) in Theorem 2 under alternative

assumptions with (II)
′
instead of (II).

The second case is the standard large sample asymptotics, which corresponds to

the cases of dn = Op(n
1/2+δ) (δ > 0), or dn = Op(n

1/2) and K2n/n = o(1). In this

case

dn(β̂2.LI − β2)
d−→ N(0, σ2Φ−1

22.1) .(4.5)

Theorem 3 is one result in this case, which can be extended directly to the nonlinear

model of (2.1) and (4.4).

The third case occurs when dn = op(n
1/2) and

√
n/d2

n → 0, which may corre-

spond to one case in Hansen et al. (2006) with slightly different normalization and

assumptions. In this case[
d2

n√
n

]
(β̂2.LI − β2)

d−→ N(0,Ψ∗∗∗)(4.6)

where

Ψ∗∗∗ = Φ−1
22.1

{
c∗

[
Ωσ2 − Ωββ

′
Ω

]
22

+ ηΓ44.2

}
Φ−1

22.1 .(4.7)

The variance (4.7) is simpler than (3.5) because the effects of n dominate the first,

the third and the fourth terms of (3.5) in Theorem 1. A simple derivation of the
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asymptotic normality of the LIML estimator will be provided in Section 6 as an

illustration.

We now turn to consider the asymptotic optimality of the LIML estimator in the

second case (dn = n1/2). In this paper we have focused on the class of estimators in

the form of (4.1). We use the proof of Theorem 4 in Section 6. (See the arguments

around (6.53).) For any normalized consistent estimator (4.1) define e =
√

n(β̂2 −
β2). Then e − ê∗ = op(1) and

ê∗ = τ 11β
′
Sβ + (0,Φ−1

22.1)Sβ ,(4.8)

where τ 11 = ( ∂ϕk

∂g11
) is a G2 × 1 vector evaluated at the true vector of parameters,

S = G1 − √
cc∗H1, G1 =

√
n[(1/n)G − plim(1/n)G] and H1 =

√
qn[(1/qn)H −

plim(1/qn)H].

Define

ê∗
LI = (0,Φ−1

22.1)(IG2+1 −
1

σ2
Ωββ

′
)Sβ .(4.9)

Then

ê∗ =
[
τ 11 +

1

σ2
(0,Φ−1

22.1)Ωβ
]
β

′
Sβ + ê∗

LI .

We notice that β
′
Sβ = σ2λ1n + op(1) in (6.7) and λ1n =

√
n(λn − c), which is the

stochastic part of the smallest characteristic root in the LIML estimation. Then if

λ1n and ê∗
LI are asymptotically uncorrelated, the LIML estimator attains the lower

bound of the asymptotic variance. A set of sufficient conditions is either the moment

conditions in Corollary 1 or Condition (VI) in Theorem 2. In the more general case

of (2.1) and the nonlinear equations (4.4), we summarize our result in Theorem 5.

Theorem 5 : For the model of (2.1) and (4.4), assume (I), (II)
′
and (VIII) with

dn = n1/2. Define the class of consistent estimators for β2 by (4.1), where ϕ is

continuously differentiable and its derivatives are bounded at the probability limits

of random matrices in (2.4) and (2.5) as K2n → ∞ and n → ∞. Then the lower

bound of the asymptotic variance can be attained if and only if

τ 11 +
1

E(β
′
Sβ)

E
[
β

′
Sβ

(
ê∗

LI + (0,Φ−1
22.1)

Ωβ

σ2

)]
= o(1) .(4.10)
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From this result we find that it is possible to modify the LIML estimator which

can attain the lower bound of the asymptotic variance and we can derive an explicit

representation. However, since it depends on the 3rd and 4th order moments of the

disturbances in the general case, it is rather complicated and its practical value may

be limited. On the other hand, if (0, IG2)E
[
(IG2+1 − 1

σ2Ωββ
′
)Sββ

′
Sβ

]
= 0 , we

can obtain the key condition

τ 11 + (0,Φ−1
22.1)

Ωβ

σ2
= o(1) .(4.11)

Thus the LIML estimator and its variants including the one by Fuller (1977) satisfy

(4.11) if we have alternative conditions in Corollary 1 or Theorem 2. Also we find

that the TSLS estimator, the GMM estimator and their variants cannot satisfy

(4.11) in the first case when c > 0.

Although Theorem 5 formally covers the (first order) asymptotic optimality for

the first and the second cases of the parameter sequences on dn and K2n, it is

immediate to extend the result to the third case, but we need additional notations.

It is because (4.7) could be regarded as a special case of (3.5) without the first, third

and the fourth terms except the normalizations.

4.3 Heteroscedasticity and the asymptotic properties

Recently, there have been some interests on the role of heteroscedasticity with many

instruments. Let Ωi = E(viv
′
i|z

(n)
i ) be the conditional covariance matrix and we

assume

(IX)
1

n

n∑
i=1

Ωi
p−→ Ω ,

where Ω is a positive definite (constant) matrix. Then in the case when both Con-

ditions (VI) and (IX) hold, the LIML estimator has still some desirable asymptotic

properties.

In the more general cases, the distribution of the LIML estimator could be sig-

nificantly affected by the presence of heteroscedasticity of disturbance terms with

many instruments. On this issue, however, there are alternative ways to improve
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the LIML estimation. The detail of this problem shall be discussed in an another

occasion.

5. Concluding Remarks

In this paper, we have developed the large K2−asymptotic theory when the

number of instruments is large in a structural equation of the simultaneous equations

system. Although the limited information maximum likelihood (LIML) estimator

and the two stage-least squares (TSLS) estimator are asymptotically equivalent in

the standard large sample theory, they are asymptotically quite different in the large-

K2 asymptotics. In some recent microeconometric models and models on panel data,

it is often a common feature that K2 is fairly large and this asymptotic theory has

some practical relevance. We have shown that the LIML estimator and its variants

may have the asymptotic optimality in the large K2−asymptotics sense. We have

given a set of sufficient conditions for the asymptotic normality and the (first order)

asymptotic efficiency of the LIML estimator.

As we have suggested in Section 3.2 briefly and in Anderson, Kunitomo and

Matsushita (2005) (or Part II of our study), our asymptotic results in this paper

(which is Part I of our study) shall give some further reasons why we have the

finite sample properties of the alternative estimation methods including the classical

LIML and the TSLS estimators, and also the semi-parametric estimation methods

of the generalized method of moments (GMM) and the empirical likelihood (EL)

estimators.

6 Proof of Theorems

In this section we give the proofs of Theorems and the mathematical derivation in

Sections 3 and 4.

Proof of Theorem 1 :

18



Substitution of (2.2) into (2.4) yields

G = (Π
′

nZ
′
+ V

′
)Z2.1A

−1
22.1Z

′

2.1(ZΠn + V)

= Π
′

2nA22.1Π2n + V
′
Z2.1A

−1
22.1Z

′

2.1V + Π
′

2nZ
′

2.1V + V
′
Z2.1Π2n .

Then

G − [Π
′

2nA22.1Π2n + K2nΩ](6.1)

= Π
′

2nZ
′

2.1V + V
′
Z2.1Π2n +

[
V

′
Z2.1A

−1
22.1Z

′

2.1V − K2nΩ
]

.

By Assumption (II) implies that as n −→ ∞

1

n
Π

′

2nZ
′

2.1V
p−→ O ,(6.2)

and
1

n

[
V

′
Z2.1A

−1
22.1Z

′

2.1V − K2nΩ
]

p−→ O .(6.3)

Then as n −→ ∞,

1

n
G

p−→ G0 =

 β
′

2

IG2

 Φ22.1(β2, IG2) + c Ω(6.4)

and
1

qn

H
p−→ Ω .(6.5)

Then β̂LI
p→ β and λn

p→ c as n → ∞.

Define G1, H1, λ1n, and b1 by G1 =
√

n( 1
n
G − G0), H1 =

√
qn( 1

qn
H − Ω),

λ1n =
√

n(λn − c), b1 =
√

n(β̂LI − β). From (2.8),

[G0 − c Ω]β +
1√
n

[G1 − λ1nΩ]β +
1√
n

[G0 − c Ω]b1 +
1

√
qn

[−cH1]β

= op(
1√
n

) .

Since (G0 − c Ω)β = 0, (2.8) gives β
′

2

IG2

 Φ22.1

√
n(β̂2.LI − β2) = (G1 − λ1nΩ −

√
cc∗H1)β + op(1) .(6.6)
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Multiplication of (6.6) on the left by β
′
= (1,−β

′

2) yields

λ1n =
β

′
(G1 −

√
cc∗H1)β

β
′
Ωβ

+ op(1) .(6.7)

Also multiplication of (6.6) on the left by (0, IG2) and substitution for λ1n from (6.6)

yields

√
n(β̂2.LI − β2) = Φ−1

22.1(0, IG2)(G1 − λ1nΩ −
√

cc∗H1)β + op(1)(6.8)

= Φ−1
22.1(0, IG2)[IG2+1 −

Ωββ
′

β
′
Ωβ

](G1 −
√

cc∗H1)β + op(1) .

By using the relation Vβ = u, we obtain

(G1 −
√

cc∗H1)β(6.9)

=
1√
n
Π

′

2nZ
′

2.1u +
√

c
1√
K2n

[
V

′
Z2.1A

−1
22.1Z

′

2.1u − K2nΩβ
]

−
√

cc∗
1

√
qn

[
V

′
(In − Z(Z

′
Z)−1Z

′
)u − qnΩβ

]
,

where Kn + qn = n. Since we have the conditional expectation given Z as

E
[
Π

′

2nZ
′

2.1Vββ
′
V

′
Z2.1Π2n|Z

]
= β

′
ΩβΠ

′

2nA22.1Π2n ,

we apply the central limit theorem with Lindeberg condition to the first term of

(6.9). (See Theorem 1 of Anderson and Kunitomo (1992)). Conditions (II) and (III)

imply that (1/
√

n)Π
(n)′

22 Z
′
2.1u has a limiting normal distribution with covariance

matrix σ2Φ22.1. This proves (i) of Theorem 1.

Next we shall consider (ii) of Theorem 1. We need to prove that the limiting

distribution of Tn = T1n +
√

cT2n − √
c c∗T3n is normal by applying a central limit

theorem, where T1n = a
′
(1/

√
n)Π

(n)′

22 Z
′
2.1u, T2n = a

′
(1/

√
K2n)W

′
2Z2.1A

−1
22.1Z

′
2.1u,

T3n = a
′
(1/

√
qn)W

′
2(In − Z(Z

′
Z)−1Z

′
)u for any constant vector a and

W
′

2 = (0, IG2)[IG2+1 −
Ωββ

′

β
′
Ωβ

]V
′
.

For the second and third terms on the right-hand side of (6.9), we notice that each

row vector of W2 (w2i = (0, IG2)(vi −uiCov(v
(n)
i ui))/σ

2)) and ui (i = 1, · · · , n) are

20



uncorrelated and E [w2iw
′
2i] = (1/σ2)[σ2Ω − Ωββ

′
Ω]22 . Thus

(0, IG2)[IG2+1 −
Ωββ

′

β
′
Ωβ

]
1√
K2n

[
V

′
Z2.1A

−1
22.1Z

′

2.1u − K2nΩβ
]

(6.10)

=
1√
K2n

n∑
i,j=1

w2iujp
(n)
ij

and

(0, IG2)[IG2+1 −
Ωββ

′

β
′
Ωβ

]
1

√
qn

[
V

′
(In − Z(Z

′
Z)−1Z

′
)u − qnΩβ

]
(6.11)

=
1

√
qn

n∑
i,j=1

w2iuj[δ
j
i − q

(n)
ij ] ,

where p
(n)
ij = z∗

′
in

[∑n
k=1 z∗knz

∗′
kn

]−1
z∗jn, q

(n)
ij = z

(n)′

i

[∑n
k=1 z

(n)
k z

(n)′

k

]−1
z

(n)
j and δi

i =

1, δj
i = 0 (i ̸= j). Then the variances of T2n and T3n are

1

K2n

E{[a′
(

n∑
i=1

w2iuip
(n)
ii +

∑
i̸=j

w2iujp
(n)
ij )]2|Z}

=
1

K2n

n∑
i=1

E [u2
i a

′
w2iw

′

2iap
(n)2
ii ] +

1

K2n

∑
i̸=j

E(u2
j)E(a

′
w2iw

′

2ia)p
(n)2
ij ,

and

1

qn

E{[a′
(

n∑
i=1

w2iui(1 − q
(n)
ii ) −

∑
i̸=j

w2iujq
(n)
ij ]2|Z}

=
1

qn

n∑
i=1

E [u2
i a

′
w2iw

′

2ia](1 − 2q
(n)
ii + q

(n)2
ii ) +

1

qn

∑
i ̸=j

E(u2
i )E(a

′
w2jw

′

2ia)q
(n)2
ij .

By using the relations
∑n

i,j=1 p
(n)2
ij = K2n,

∑n
i,j=1 q

(n)2
ij = Kn and

∑n
i=1(1 − 2q

(n)
ii +

q
(n)2
ii ) +

∑
i ̸=j q

(n)2
ij = qn, the limiting variances of T2n and T3n are the limits of

1

K2n

a
′
[
K2nσ2E(w2iw

′

2i) +
n∑

i=1

p
(n)2
ii Γ44.2

]
a(6.12)

and
1

qn

a
′
[
qnσ2E(w2iw

′

2i) + (n − 2Kn +
n∑

i=1

q
(n)2
ii )Γ44.2

]
a .(6.13)

In order to evaluate the covariances of three terms of Tn, we first notice

E{[ 1√
n
Π

(n)′

22 Z
′

2.1u][
1√
n
W

′

2

(
Z2.1A

−1
22.1Z

′

2.1 − c∗(In − Z(Z
′
Z)−1Z

′
)
)
u]

′|Z}(6.14)

=
1

n

n∑
i=1

Π
(n)′

22 z∗in
(
p

(n)
ii − c∗(1 − q

(n)
ii )

)
E(u2w

′

2) = Ξ
(n)
3.2 (say) .
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Second,

E{[ 1√
n
W

′

2Z2.1A
−1
22.1Z

′

2.1u][
1√
n
W

′

2(In − Z(Z
′
Z)−1Z

′
)u]

′|Z}

=
1

n

n∑
i=1

E(u2
i w2iw

′

2i)p
(n)
ii [1 − q

(n)
ii ] +

1

n

n∑
i̸=j

σ2E(w2iw
′

2i)p
(n)
ij [δj

i − q
(n)
ij ]

=
1

n
[K2n −

n∑
i=1

p
(n)
ii q

(n)
ii ]Γ44.2

by using the relations that
∑n

i,j=1 p
(n)
ij δj

i = K2n and
∑n

i,j=1 p
(n)
ij q

(n)
ji = K2n. Hence we

have evaluated each term

E(T 2
n) = E(T 2

1n) + cE(T 2
2n) + cc∗E(T 2

3n)

+2
√

cE(T1nT2n) − 2
√

cc∗E(T1nT3n) − 2c
√

c∗E(T2nT3n) .

Then we use the relation c(1+c∗) = c∗ for the coefficients of two terms of E(u2
i w2iw

′
2i).

Also by using the relation cc∗(1 − c∗) − 2cc∗ = −c2
∗ for the coefficients of Γ44.2, we

find that

lim
n→∞

[
c

n

K2n

1

n

n∑
i=1

p
(n)2
ii + cc∗

1

qn

(n − 2Kn +
n∑

i=1

q
(n)2
ii )

−2c

√
c∗

n

K2n

n

qn

1

n
(K2n −

n∑
i=1

p
(n)
ii q

(n)
ii )

]
= lim

n→∞
ηn ,

where ηn = (1/n)
∑n

i=1[p
(n)
ii + c∗q

(n)
ii ]2 − c2

∗. By using (6.14), the limiting covariance

matrix of
√

n(β̂2.LI − β2) is (3.5).

Finally, by using Lemma 2 below for every constant vector a, we have the asymp-

totic normality of (3.4) with the asymptotic covariance matrix Ψ∗ and it proves (ii)

of Theorem 1.

When G2 = 1, we can use the relation σ2 = ω11 − 2β2ω12 + β2
2ω22 for Ω = (ωij)

to obtain σ2ω22 − (ω12 − βω22)
2 = |Ω| .

Q.E.D

Lemma 1 : Assume Condition (VI) and c = limn→∞ K2n/n. Then

plim
n→∞

1

n

n∑
i=1

[p
(n)
ii + c∗q

(n)
ii ]2 − c2

∗ = plim
n→∞

1

n

n∑
i=1

[p
(n)
ii − c∗(1 − q

(n)
ii )]2 = 0 ,(6.15)
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where c∗ = c/(1 − c), p
(n)
ij = (Z2.1A

−1
22.1Z

′
2.1)ij and q

(n)
ij = (ZA−1Z

′
)ij.

Proof of Lemma 1 : Note that

ZA−1Z
′
= Z1A

−1
11 Z

′

1 + Z2.1A
−1
22.1Z

′

2.1

because Z2.1 = Z2 − Z1A
−1
11 Z

′
1, ZC

[
(ZC)

′
ZC

]−1
(ZC)

′
= Z(Z

′
Z)−1Z

′
for any non-

singular matrix C and

(Z1,Z2.1) = (Z1,Z2)

 IK1 −A−1
11 A12

O IK2n

 .

Then the left-hand side of (6.15) is

plim
n→∞

1

n

n∑
i=1

[
p

(n)
ii + c∗(p

(n)
ii + (Z1A

−1
11 Z

′

1)ii)
]2

− c2
∗

= plim
n→∞

1

(1 − c)2n

n∑
i=1

{[
p

(n)
ii + c(Z1A

−1
11 Z

′

1)ii

]2
− c2

}

= plim
n→∞

1

(1 − c)2n

n∑
i=1

{
p

(n)2
ii + 2cp

(n)
ii (Z1A

−1
11 Z

′

1)ii + c2(Z1A
−1
11 Z

′

1)
2
ii − c2

}
.

Note 0 ≤ p
(n)
ii ≤ 1, 0 ≤ (Z1A

−1
11 Z

′
1)ii ≤ 1, and tr(Z1A

−1
11 Z

′
1) = K1. Hence the above

plimit is 1/(1 − c)2 times plimn→∞
∑n

i=n[p
(n)
ii ]2/n − c2. However,

1

n

n∑
i=1

[
p

(n)
ii − c

]2
=

1

n

n∑
i=1

[
p

(n)2
ii − 2cp

(n)
ii + c2

]
=

1

n

n∑
i=1

p
(n)2
ii − 2c

K2n

n
c + c2

→ plim
n→∞

1

n

n∑
i=1

p
(n)2
ii − c2 .

Q.E.D.

Lemma 2 : Let t
(n)
1i = a

′
Π

(n)′

22 z∗in and t
(n)
2i = a

′
w2i (i = 1, · · · , n) for any (non-zero)

constant vector a. Then as n → ∞,

Tn =
1√
n

n∑
i=1

t
(n)
1i ui +

1√
n

n∑
i,j=1

t
(n)
2i uj

[
p

(n)
ij − c∗(δ

j
i − q

(n)
ij )

]
(6.16)

d−→ N(0, ∆) ,
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where ∆ = a
′
Φ22.1Ψ

∗Φ22.1a.

Proof of Lemma 2 : We have already shown that E(Tn) = 0 and E [T 2
n ] −→ ∆

as n −→ ∞ by Lemma 1. Then, in order to prove a central limit theorem by the

standard characteristic function method, it is sufficient to show

E [T 3
n ] −→ 0 .(6.17)

The third order moment of the second term of Tn ×
√

n, for instance, is

E [
n∑

i,j=1

t
(n)
2i ujp

(n)
ij ]3 =

∑
i,i

′
,i
′′

,j,j
′
,j

′′
p

(n)
ij p

(n)

i′j′
p

(n)

i′′j′′
E(t2it2i

′ t2i
′′ujuj

′uj
′′ )

=
∑

i=i
′
=i

′′
,j=j

′
=j

′′
+

∑
i=i

′
=j

′′ ̸=i
′′
=j=j

′
+

∑
i=i

′
=j

′ ̸=i
′′
=j=j

′′
+

∑
i=i

′′=j
′′ ̸=i′=j=j

′

because each terms of t2i and uj for any i and j are uncorrelated and other terms

except the above summations are zeros. Then we need to evaluate four types of

summations. For the first three summations we use the fact that for any i, j p
(n)
ij =

p
(n)
ji , |p(n)

ij | ≤ 1,

|
n∑

i,j=1

p
(n)3
ij | ≤

n∑
i,j=1

p
(n)
ij p

(n)
ji =

n∑
i=1

p
(n)
ii = K2n

and

|
n∑

i,j=1

p
(n)2
ij p

(n)
ji | ≤

n∑
i,j=1

p
(n)
ij p

(n)
ji =

n∑
i=1

p
(n)
ii = K2n .

For the fourth summation we use Lemma 3 to obtain |∑n
i,j=1 p

(n)
ii p

(n)
jj p

(n)
ij | ≤ K2n.

Because of the boundedness of 6th order moments,

(
1√
n

)3E|
n∑

i,j=1

t
(n)
2i ujp

(n)
ij |3 −→ 0

as n −→ ∞.

Next we set a projection matrix D = (d
(n)
ij ) = (δj

i − q
(n)
ij ). Then we use the fact that

for any i, j, d
(n)
ij = d

(n)
ji , |d(n)

ij | ≤ 1,

|
n∑

i,j=1

d
(n)3
ij | ≤

n∑
i,j=1

d
(n)
ij d

(n)
ji =

n∑
i=1

d
(n)
ii = n − Kn

and

|
n∑

i,j=1

d
(n)2
ij d

(n)
ji | ≤

n∑
i,j=1

d
(n)
ij d

(n)
ji =

n∑
i=1

d
(n)
ii = n − Kn .
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We also apply similar arguments to the first term under Condition (III) and other

cross product terms of p
(n)
ij and d

(n)
ij , we have the result.

Q.E.D.

Lemma 3 : Let an n × n matrix P = (pij) satisfying P2 = P = P
′
and rank(P) =

r ≤ n. Then
n∑

i,j=1

piipjjpij ≤ r .(6.18)

Proof of Lemma 3 : Since P is a projection matrix, there exists an orthogonal

matrix C such that

P = C

 Ir O

O O

 C
′
.

Then

n∑
i,j=1

piipjjpij = (p11, · · · , pnn)C

 Ir O

O O

 C
′


p11

...

pnn



≤ (p11, · · · , pnn)CC
′


p11

...

pnn


=

n∑
i=1

p2
ii ≤

[
max
1≤j≤n

pjj

] n∑
i=1

pii .

Since C is an orthogonal matrix and 0 ≤ pii ≤ 1, we have (6.18).

Q.E.D.

Proof of Corollary 2 : Consider

s
(n)
jk =

1

n

n∑
i=1

zjizki
p−→ mjk

and M = (mjk). Then

1

n

n∑
i=1

[
q
(n)2
ii − c2

]
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=
1

n

n∑
i=1

{
[
1

n
z

(n)′

i M−1z
(n)
i − c] +

K1

Kn

+
1

n
z

(n)′

i [S−1 − M−1]z
(n)
i

}2

= (
Kn

n
)2 1

n

n∑
i=1

1

Kn

(z
(n)′

i M−1z
(n)
i − Kn)]2

−2(
Kn

n
)2 1

n

n∑
i=1

[
1

Kn

(z
(n)′

i M−1z
(n)
i − Kn)][

1

Kn

Kn∑
j,j′=1

zjizj′ i(s
jj

′

− mjj
′

)]

+(
Kn

n
)2 1

n

n∑
i=1

[
1

Kn

Kn∑
j,j

′
=1

zjizj
′
i(s

jj
′

− mjj
′

)]2 ,

where sjk = (s
(n)
jk )−1 and mjk = (mjk)

−1. Because

(
1

Kn

)2
Kn∑

j,j
′
,k,k

′
=1

(sjj
′

− mjj
′

)(skk
′

− mkk
′

)[
1

n

n∑
i=1

zijzij
′zikzik

′ ]

converges to 0 in probability under Condition (VII), we have the result by Lemma

1.

Q.E.D.

Proof of Theorem 3 :

(I) We make use of the fact that Z(Z
′
Z)−1Z

′
and Z2.1(Z

′
2.1Z2.1)

−1Z
′
2.1 are idempotent

of rank Kn and K2n, respectively, and that the boundedness of E[v4
ji|z

(n)
i ] implies a

Lindeberg condition

sup
i=1,···,n

E
[
v

′

iviI(v
′

ivi > a)|z(n)
1 , · · · , z(n)

n

]
p−→ 0 (a → ∞) .(6.19)

We shall refer to Theorem 1 of Anderson and Kunitomo (1992). Let

G∗
1 =

√
n[

1

n
G − 1

n
Π

′

2nA22.1Π2n]

=
1√
n
Π

′

2nZ
′

2.1V +
1√
n
V

′
Z2.1Π2n +

1√
n
V

′
Z2.1A

−1
22.1Z

′

2.1V .(6.20)

Since the matrix V
′
Z2.1A

−1
22.1Z

′
2.1V is positive definite and E [v

(n)
i v

(n)′

i |z(n)
i ] is bounded,

there is a (constant) Ω̄ such that

E [
1√
n
V

′
Z2.1A

−1
22.1Z

′

2.1V] = E [
1√
n

n∑
i=1

Ω
(n)
i p

(n)
ii ](6.21)

≤ K2n√
n

Ω̄ −→ O .
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Then

G∗
1β − 1√

n
Π

′

2nZ
′

2.1Vβ =
1√
n
V

′
Z2.1A

−1
22.1Z

′

2.1Vβ
p→ 0 .(6.22)

For the LIML estimator (2.8) implies

(0, IG2)

[
1

n
Π

′

2nA22.1Π2n +
1√
n
G∗

1 − λn
1

qn

H

]  1

−β̂2.LI

 = 0 .(6.23)

By using the facts that (1/
√

n)G∗
1

p→ O, λn
p→ 0 and [1/qn]H

p→ Ω, we have

Φ22.1(β2, IG2)plimn→∞

 1

−β̂2.LI

 = 0 ,

which implies plimn→∞β̂2.LI = β2 because Φ22.1 is positive definite. Then again

(2.8) implies

√
n

[
1

n
Π

′

2nA22.1Π2n +
1√
n
G∗

1 − λn
1

qn

H

] [
β + (β̂LI − β)

]
= 0.(6.24)

Lemma 4 : Let λn (n > 2) be the smallest root of (2.9). For 0 < ν < 1 − η and

0 ≤ η < 1 ,

nνλn
p−→ 0(6.25)

as n → ∞ .

Proof of Lemma 4

Write

λn = min
b

b
′ 1
n
Gb

b′ 1
qn

Hb
(6.26)

≤ qn

n

β
′
Gβ

β
′
Hβ

=
qn

n

β
′
V

′
Z2.1A

−1
22.1Z

′
2.1Vβ

β
′
V′(In − Z(Z′Z)−1Z′)Vβ

.

By using the boundedness of the fourth order moments of vi, we have

1

n

n∑
i=1

viv
′

i

p→ Ω .(6.27)
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Also n−(1−ν)V
′
Z2.1A

−1
22.1Z

′
2.1V

p→ O by using the similar arguments as (6.22). Then

nνλn ≤
[
qn

n

]
n−(1−ν)β

′
V

′
Z2.1A

−1
22.1Z

′
2.1Vβ

n−1β
′
V′(In − Z(Z′Z)−1Z′)Vβ

p−→ 0(6.28)

as n → ∞ . Q.E.D.

Due to Lemma 4,
√

n λn
p→ 0 when 0 ≤ η < 1/2 (and the asymptotic distributions

of the LIML and TSLS estimators are equivalent). Then

(0, IG2)
1

n
Π

′

2nA22.1Π
(n)
22

√
n(β̂2.LI − β2) − (0, IG2)G

∗
1β

p→ 0 .(6.29)

We notice that

1

n

n∑
i=1

Ω
(n)
i ⊗ Π

(n)′

22 z∗inz
∗′
inΠ

(n)
22 − Ω ⊗ Φ22.1

=
1

n

n∑
i=1

(Ω
(n)
i − Ω) ⊗ Π

(n)′

22 z∗inz
∗′
inΠ

(n)
22

+
1

n

n∑
i=1

Ω ⊗
[
Π

(n)′

22 z∗inz
∗′
inΠ

(n)
22 − Φ22.1

]
p−→ O

because Condition (II
′
) and

∥ 1

n

n∑
i=1

(Ω
(n)
i − Ω) ⊗ Π

(n)′

22 z∗inz
∗′
inΠ

(n)
22 ∥

≤ max
1≤i≤n

∥Ω(n)
i − Ω∥∥ 1

n

n∑
i=1

Π
(n)′

22 z∗inz
∗′
inΠ

(n)
22 ∥

p−→ 0 .

Then by applying the central limit theorem (see Theorem 1 of Anderson and Ku-

nitomo (1992)) to (1/
√

n)Π
(n)′

22 Z
′
2.1Vβ, we obtain the limiting normal distribution

N(0, σ2Φ22.1) . This proves (i) of Theorem 4 for 0 ≤ η < 1/2.

(II) We consider the asymptotic distribution of the LIML estimator when 1/2 ≤
η < 1 . By using the argument of (6.23) and the fact that λn

p−→ 0, we have

β̂2.LI − β2
p−→ 0 . By multiplying β

′
from the left to (6.40), we have

β
′
{
√

n[
K2n

n
− λn]Ω +

1√
n
V

′
Z2.1Π2n +

1√
n

[V
′
Z2.1A

−1
22.1Z

′

2.1V − K2nΩ]

−λn

√
n

qn

H1

}
×

[
β + (β̂LI − β)

]
= 0 .

28



Lemma 5 : For 0 ≤ η < 1,

√
n

[
λn − K2n

n

]
p−→ 0(6.30)

as n −→ ∞ .

Proof of Lemma 5 : The result follows from (6.25), (6.26) and σ2 = β
′
Ωβ > 0.

Q.E.D.

Multiply (6.24) on the left by (0, IG2) to obtain

(0, IG2)
√

n
{[

1

n
Π

′

2nA22.1Π2n +
K2n

n
Ω

]
+

1√
n

[
1√
n
Π

′

2nZ
′

2.1V +
1√
n
V

′
Z2.1Π2n +

1√
n

(V
′
Z2.1A

−1
22.1Z

′

2.1V − K2n)Ω)

]

−λn
1

qn

H

}
×

[
β + (β̂LI − β)

]
= 0 .

We consider the asymptotoic behavior of the quadratic term

1√
n

[
V

′
Z2.1A

−1
22.1Z

′

2.1V − K2nΩ
]

=
1√
n

 n∑
i,j=1

p
(n)
ij

(
viv

′

j − δj
i Ω

(n)
i

) +
1√
n

[
n∑

i=1

p
(n)
ii

(
Ω

(n)
i − Ω

)]
,

where δj
i is the indicator function (δi

i = 1 and δj
i = 0 (i ̸= j)). For any constant

vectors a and b, there exists a positive constant M1 such that

1

n
E

 n∑
i,j=1

p
(n)
ij × a

′
(v

(n)
i v

(n)′

j − δj
i Ω

(n)
i )b

2

=
1

n
E

[
n∑

i=1

p
(n)2
ii [a

′
(viv

′

i − Ω
(n)
i )b]2

+
∑
i̸=j

p
(n)2
ij [a

′
vivjb]2 +

∑
i̸=j

p
(n)2
ij [a

′
viv

′

jba
′
vjv

′

ib]


≤ M1

K2n

n
−→ 0
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because the conditional moments of v4
ji are bounded,

∑n
i=1 p

(n)
ii = K2n and∑n

i=1 p
(n)2
ii ≤ K2n . Since

∥ 1√
n

[
n∑

i=1

p
(n)
ii

(
Ω

(n)
i − Ω

)]
∥ ≤

[√
n max

1≤i≤n
∥Ω(n)

i − Ω∥
]

K2n

n
,

we find
1√
n

[
V

′
Z2.1A

−1
22.1Z

′

2.1V − K2nΩ
]

p−→ O(6.31)

when 0 ≤ η < 1 .

We now use (6.23), (6.25) and the fact that[
1

n
Π

′

2nA22.1Π2n +
K2n

n
Ω − λn

1

qn

H

]
β = op(

1√
n

) .

By multiplying the preceding equation out to separate the terms with factor β and

with the factor
√

n (β̂LI − β), we have

(0, IG2)

[
1

n
Π

′

2nA22.1Π2n

√
n(β̂LI − β) +

1√
n
Π

′

2nZ
′

2.1Vβ

]
p→ 0 ,(6.32)

which is equivalent to

Φ22.1

√
n(β̂2.LI − β2) −

1√
n
Π

(n)′

22 Z
′

2.1Vβ
p→ 0 .(6.33)

By applying the CLT to the second term of (6.33) as (I), we complete the proof of

(i) of Theorem 3 for the LIML estimator of β when 1/2 ≤ η < 1 .

(III) Next, we shall investigate the asymptotic property of the TSLS estimator. If

we substitute λn for 0 in (2.8), we have the TSLS estimator. Then we find that the

limiting distribution of the TSLS estimator is the same as the LIML estimator when

0 ≤ η < 1/2.

When η = 1/2, however, we have

G∗
1β −

[
cΩβ +

1√
n
Π

′

2nZ
′

2.1Vβ

]
p−→ O .(6.34)

We set β̂
′

TS = (1,−β̂
′

2.TS), which is the solution of (2.11). By evaluating each term

of

(0, IG2)
√

n

[
1

n
Π

′

2nA22.1Π2n +
1√
n
G∗

1

] [
β + (β̂TS − β)

]
= 0 ,
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we have [
1

n
Π

(n)′

22 A22.1Π2n

]√
n(β̂TS − β) − (0, IG2)G

∗
1β = op(1) .(6.35)

Then the limiting distribution of
√

n(β̂2.TS−β2) is the same as that of Φ−1
22.1(0, IG2)G

∗
1β.

By using (1/
√

n)V
′
Z2.1A

−1
22.1Z

′
2.1Vβ

p→ cΩβ and applying the CLT as (I), we have

the result for the TSLS estimator of β when η = 1/2.

When 1/2 < η < 1, we notice

n1−η
[
1

n
G − 1

n
Π

′

2nA22.1Π2n

]
β(6.36)

=
K2n

nη
Ωβ +

1

nη
Π

′

2nZ
′

2.1Vβ +
1

nη

[
V

′
Z2.1A

−1
22.1Z

′

2.1V − K2nΩ
]
β.

Because the last two terms of the right-hand side of (6.36) except the first term are

of the order op(n
−η), we have

n1−η
[
1

n
G − 1

n
Π

′

2nA22.1Π2n

]
β

p−→ cΩβ(6.37)

as n −→ ∞. Hence by using the similar arguments as (I) for the TSLS estimator of

β,

(0, IG2)
1

n
Π

′

2nA22.1Π
(n)
22 × n1−η(β̂2.TS − β2) − (0, IG2)cΩβ

p→ 0(6.38)

and we complete the proof of (ii) of Theorem 3 for the TSLS estimator when 1/2 ≤
η < 1.

Q.E.D.

Proof of Theorem 4 : We set the vector of true parameters β
′
= (1,−β

′

2) =

(1,−β2, · · · ,−β1+G2). An estimator of the vector β2 is composed of

β̂k = ϕk(
1

n
G,

1

qn

H) (k = 2, · · · , 1 + G2) .(6.39)

For the estimator to be consistent we need the conditions

βk = ϕk


 β

′

2

IG2

 Φ22.1 (β2, IG2) + cΩ,Ω

 (k = 2, · · · , 1 + G2)(6.40)

as identities in β2, Φ22.1, and Ω. Let a (1 + G2) × (1 + G2) matrix

T(k) =

(
∂ϕk

∂gij

)
= (τ

(k)
ij ) (k = 2, · · · , 1 + G2; i, j = 1, · · · , 1 + G2)(6.41)
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evaluated at the probability limits of (6.43). We write a (1 + G2)× (1 + G2) matrix

Θ (= (θij))

Θ =

 β
′

2

IG2

 Φ22.1 (β2, IG2) =

 β
′

2Φ22.1β2 β
′

2Φ22.1

Φ22.1β2 Φ22.1

 ,

where Φ22.1 = (ρm,l) (m, l = 2, · · · , 1 + G2), (Φ22.1β2)l =
∑1+G2

j=2 βjρlj (l = 2, · · · , 1 +

G2), (β
′

2Φ22.1)m =
∑1+G2

i=2 βiρim (m = 2, · · · , 1+G2), and β
′

2Φ22.1β2 =
∑1+G2

i,j=2 ρijβiβj .

By differentiating each components of Θ with respect to βj (j = 1, · · · , G2), we have

∂Θ

∂βj

= (
∂θlm

∂βj

) ,(6.42)

where ∂θ11

∂βj
= 2

∑1+G2
i=2 ρjiβi (j = 2, · · · , 1 + G2),

∂θ1m

∂βj
= ρjm (m = 2, · · · , 1 + G2),

∂θl1

∂βj
= ρlj (l = 2, · · · , 1 + G2), and ∂θlm

∂βj
= 0 (l,m = 2, · · · , 1 + G2) .

Hence

tr

(
T(k) ∂Θ

∂βj

)
= 2τ

(k)
11

1+G2∑
i=2

ρjiβi + 2
1+G2∑
i=2

ρjiτ
(k)
ji = δk

j ,(6.43)

where we define δk
k = 1 and δk

j = 0 (k ̸= j) .

Define a (1 + G2) × (1 + G2) partitioned matrix

T(k) =

 τ
(k)
11 τ

(k)′

2

τ
(k)
2 T

(k)
22

 .(6.44)

Then (6.47) is represented as

2τ
(k)
11 Φ22.1β + 2Φ22.1τ

(k)
2 = ϵk ,(6.45)

where ϵ
′
k = (0, · · · , 0, 1, 0, · · · , 0) with 1 in the k-th place and zeros in other elements.

Since Φ22.1 is positive definite, we solve (6.49) as

τ
(k)
2 =

1

2
Φ−1

22.1ϵk − τ
(k)
11 β2 .(6.46)

Further by differentiating Θ with respect to ρij, we have

∂Θ

∂ρii

= (
∂θlm

∂ρii

) ,(6.47)
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where ∂θ11

∂ρii
= β2

i , ∂θ1m

∂ρii
= βi (m = i), 0 (m ̸= i) , ∂θl1

∂ρii
= βi (l = i), 0 (l ̸= i) and

∂θlm

∂ρii
= 1 (l = m = i), 0 (otherwise).

For i ̸= j
∂Θ

∂ρij

= (
∂θlm

∂ρij

) ,(6.48)

where ∂θ11

∂ρij
= 2βiβj , ∂θ1m

∂ρij
= βj (m = i), βi (m = j), 0 (m ̸= i, j) , ∂θl1

∂ρij
= βj (l =

i), βi (l = j), 0 (l ̸= i, j) , and ∂θlm

∂ρij
= 1 (l = i,m = j or l = j,m = i), 0 (otherwise)

for (2 ≤ l,m ≤ 1 + G2) .

Then we have the representation

tr

(
T(k) ∂Θ

∂ρij

)
=


β2

i τ
(k)
11 + 2τ

(k)
1i βi + τ

(k)
ii (i = j)

2βiβjτ
(k)
11 + 2τ

(k)
1j βi + 2τ

(k)
1i βj + 2τ

(k)
ij (i ̸= j)

.(6.49)

In the matrix form we have a simple relation as

τ
(k)
11 β2β

′

2 + τ
(k)
2 β

′

2 + β2τ
(k)′

2 + T
(k)
22 = O .(6.50)

Then we have the representation

T
(k)
22 = −τ

(k)
11 β2β

′

2 − τ
(k)
2 β

′

2 − β2τ
(k)′

2

= τ
(k)
11 β2β

′

2 −
1

2

[
Φ−1

22.1ϵkβ
′

2 + β2ϵ
′

kΦ
−1
22.1

]
.

Next we consider the role of the second matrix in (6.43). By differentiating (6.43)

with respect to ωij (i, j = 1, · · · , 1 + G2), we have the condition

c
∂ϕk

∂gij

= − ∂ϕk

∂hij

(k = 2, · · · , 1 + G2; i, j = 1, · · · , 1 + G2)

evaluated at the probability limit of (6.43). Let

S = G1 −
√

cc∗H1 =

 s11 s
′
2

s2 S22

 .(6.51)

Since ϕ( · ) is differentiable and its first derivatives are bounded at the true param-

eters by assumption, the linearized estimator of βk in the class of our concern can
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be represented as

1+G2∑
g,h=1

τ
(k)
gh sgh = τ

(k)
11 s11 + 2τ

(k)′

2 s2 + tr
[
T

(k)
22 S22

]
= τ

(k)
11 s11 +

(
ϵ
′

kΦ
−1
22.1 − 2τ

(k)
11 β

′

2

)
s2 + tr

[(
τ

(k)
11 β2β

′

2 − Φ−1
22.1ϵkβ

′

2

)
S22

]
= τ

(k)
11

[
s11 − 2β

′

2s2 + β
′

2S22β2

]
+ ϵ

′

kΦ
−1
22.1(s2 − S22β2)

= τ
(k)
11 β

′
Sβ + ϵ

′

kΦ
−1
22.1(s2,S22)β .

Let

τ 11 =


τ

(2)
11

...

τ
(1+G2)
11

(6.52)

and we consider the asymptotic behavior of the normalized estimator
√

n(β̂2 − β2)

as

ê =
[
τ 11β

′
+ (0,Φ−1

22.1)
]
Sβ .(6.53)

Since the asymptotic variance-covariance matrix of Sβ has been obtained by the

proof of Theorem 1, Theorem 2 and Lemma 6 below, we have

E
[
ê ê

′]
=

[
(τ 11 +

1

σ2
(0,Φ−1

22.1)Ωβ)β
′
+ (0,Φ−1

22.1)(IG2+1 −
Ωββ

′

β
′
Ωβ

)

]

×E [Sββ
′
S] ×

[
(τ 11 +

1

σ2
(0,Φ−1

22.1)Ωβ)β
′
+ (0,Φ−1

22.1)(IG2+1 −
Ωββ

′

β
′
Ωβ

)

]′

= Ψ∗ + E
[
(β

′
Sβ)2

] [
τ 11 + (0,Φ−1

22.1)
1

σ2
Ωβ

] τ
′

11 +
1

σ2
β

′
Ω

 0
′

Φ−1
22.1


 + o(1) ,

where Ψ∗ has been given by Corollary 1, Theorem 2 or Corollary 2.

This covariance matrix is the sum of a positive semi-definite matrix of rank 1 and a

positive definite matrix. It has a minimum if

τ 11 = − 1

σ2
(0,Φ−1

22.1)Ωβ .(6.54)

Hence we have completed the proof of Theorem 4.

Q.E.D.
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Lemma 6 : Under the assumptions of Theorem 2,

(0, IG2)[IG2+1 −
Ωββ

′

β
′
Ωβ

]E
[
Sββ

′
Sβ|Z

]
= op(1) .(6.55)

Proof of Lemma 6 : We need to evaluate each term of

1

n
E

{[
u

′
Z2.1A

−1
22.1Z

′

2.1u − c∗u
′
(In − Z(Z

′
Z)−1Z

′
)u

]
×

[
Π

(n)′

22 Z
′

2.1u + W
′

2Z2.1A
−1
22.1Z

′

2.1u − c∗W
′

2(In − Z(Z
′
Z)−1Z

′
)u

]
|Z

}
,

where W
′
2 = V

′
2 − (0, IG2)Ωβu

′
/σ2.

By using the similar calculations as (6.12)-(6.14) on the third and fourth order

moments, it is equivalent to

1

n

n∑
i=1

Π
(n)′

22 z∗in
(
p

(n)
ii − c∗(1 − q

(n)
ii )

)
E(u3

i ) +
1

n

n∑
i=1

(
p

(n)
ii − c∗(1 − q

(n)
ii )

)2
E(u3

i w2i) .

Then by using Lemma 1, we have the desired result.

Q.E.D

Proof of (4.6) and (4.7) : We use the arguments in a parallel way to the

proof of Theorem 1. In the nonlinear case we set

G = Π
′

2nZ2.1A
−1
22.1Z

′

2.1Π2n+V
′
Z2.1A

−1
22.1Z

′

2.1V+Π
′

2nZ2.1A
−1
22.1Z

′

2.1V+V
′
Z2.1A

−1
22.1Z

′

2.1Π2n

and

H = Π
′

2n[In − ZA−1Z
′
]Π2n + V

′
[In − ZA−1Z

′
]V(6.56)

+Π
′

2n[In − ZA−1Z
′
]V + V

′
[In − ZA−1Z

′
]Π2n ,

where Π2n = Π
(n)
2 (Z)[β, IG2 ] and Π

(n)
2 (Z) is given by (4.4).

Because of Condition (VIII), (1/qn)H− (1/qn)V
′
[In −ZA−1Z

′
]V = op(1), then the

essential arguments of the proof of Theorem 1 hold. In the third case, however,

we notice that the noncentrality term (i.e. the first term) of (1/n)G is of smaller

order than the second term (1/n)V
′
Z2.1A

−1
22.1Z

′
2.1V. Hence in this case because

(1/n)G
p→ cΩ and (1/qn)H

p→ Ω, we find

|cΩ − plimλnΩ| = 0(6.57)
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and hence plimλn = c. Then we consider

n

d2
n

[
(
1

n
G − cΩ) − (λn − c)Ω − c(

1

qn

H − Ω)

]
plimβLI = op(1) .(6.58)

By evaluating each terms as in the proof of Theorem 1, β
′

2

IG2

 Φ22.1(β2, IG2) plimβLI = op(1)(6.59)

and thus β̂LI
p→ β as n → ∞.

For the asymptotic normality of the LIML estimator, we use the similar arguments as

(6.6)-(6.8) in the proof of Theorem 1. In the present case, the equation corresponding

to (6.8) becomes

(0, IG2)[IG2+1 −
1

σ2
Ωββ

′
](G1 −

√
cc∗H1)β = Φ22.1

d2
n√
n

(β̂2.LI − β2) + op(1) ,(6.60)

where G1 and H1 are defined in a similar way as the proof of Theorem 1. Because

d2
n/n → 0, the first term of (6.9) converges to zero vector and Ξ3.2 = O as n → ∞.

Then we have the result. Q.E.D.
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APPENDIX : Figures and Tables

In Figures the distribution functions of the LIML estimator are shown with the large sample

normalization. The limiting distributions for the LIML estimator in the standard large asymptotics

are N(0, 1) as n → ∞, which are denoted as ”o” while the limiting distributions for the LIML

estimator in the large K2 asymptotics are N(0, a) (a ≥ 1), which are denoted by the dashed curves

and ”x”. The parameter α stands for the normalized coefficient of an endogenous variable and the

details of numerical computation method are given in Anderson et al. (2005).

The tables of t-ratios include the 5, 10, 90 and 95 percentiles in one-side or two-sides, of the

null-distributions for each case.
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Figure 1A: CDF of Standardized LIML estimator and approximations:
n − K = 30, K2 = 5, α = 0.5, δ2 = 30, ui = N(0, 1)
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Figure 2A: CDF of Standardized LIML estimator and approximations:
n − K = 30, K2 = 30, α = 0.5, δ2 = 50, ui = N(0, 1)
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Figure 3A: CDF of Standardized LIML estimator and approximations:
n − K = 100, K2 = 30, α = 0.5, δ2 = 30, ui = (χ2(3) − 3)/

√
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Figure 4A: CDF of Standardized LIML estimator and approximations:
n − K = 100, K2 = 30, α = 0.5, δ2 = 30, ui = t(5)
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Figure 5A: CDF of Standardized LIML estimator and approximations:
n − K = 30, K2 = 5, α = 1, δ2 = 30, ui = N(0, 1)
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Figure 6A: CDF of Standardized LIML estimator and approximations:
n − K = 30, K2 = 30, α = 1, δ2 = 50, ui = N(0, 1)
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Figure 7A: CDF of Standardized LIML estimator and approximations:
n − K = 100, K2 = 30, α = 1, δ2 = 30, ui = (χ2(3) − 3)/
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Figure 8A: CDF of Standardized LIML estimator and approximations:
n − K = 100, K2 = 30, α = 1, δ2 = 30, ui = t(5)
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normal tlarge−n tlarge−K telliplarge−K tnonnormal
large−K

X05 -1.65 -2.67 -1.86 -1.86 -1.86
X10 -1.28 -2.07 -1.44 -1.44 -1.43

MEDN 0 -0.01 -0.01 -0.01 -0.01
X90 1.28 1.42 1.01 1.01 1.01
X95 1.65 1.68 1.24 1.24 1.23

P (t < z05) 5.0% 15.2% 7.4% 7.3% 7.4%
P (t > z95) 5.0% 5.7% 0.9% 1.0% 1.0%

P (|t| > z975) 5.0% 13.0% 4.4% 4.4% 4.4%
P (|t| > z95) 10.0% 20.8% 8.4% 8.3% 8.4%

Table 1B: Null distributions of t-ratios:
n − K = 100, K2 = 30, δ2 = 30, α = 0.5, ui = (χ2(3) − 3)/

√
6

normal tlarge−n tlarge−K telliplarge−K tnonnormal
large−K

X05 -1.65 -2.58 -1.81 -1.81 -1.81
X10 -1.28 -2.01 -1.40 -1.40 -1.40

MEDN 0 0.00 0.00 0.00 0.00
X90 1.28 1.42 1.01 1.01 1.01
X95 1.65 1.68 1.23 1.23 1.23

P (t < z05) 5.0% 14.4% 6.8% 6.8% 6.8%
P (t > z95) 5.0% 5.5% 0.9% 0.9% 0.9%

P (|t| > z975) 5.0% 12.3% 3.9% 3.9% 4.0%
P (|t| > z95) 10.0% 20.0% 7.7% 7.6% 7.7%

Table 2B: Null distributions of t-ratios:
n − K = 100, K2 = 30, δ2 = 30, α = 0.5, ui = t(5)
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normal tlarge−n tlarge−K telliplarge−K tnonnormal
large−K

X05 -1.65 -2.61 -2.01 -2.01 -2.01
X10 -1.28 -1.94 -1.50 -1.49 -1.50

MEDN 0 0.01 0.00 0.00 0.00
X90 1.28 1.21 0.95 0.95 0.95
X95 1.65 1.42 1.12 1.12 1.12

P (t < z05) 5.0% 13.8% 8.2% 8.2% 8.2%
P (t > z95) 5.0% 1.8% 0.2% 0.2% 0.2%

P (|t| > z975) 5.0% 10.3% 5.4% 5.3% 5.3%
P (|t| > z95) 10.0% 15.6% 8.4% 8.4% 8.4%

Table 3B: Null distributions of t-ratios:
n − K = 100, K2 = 30, δ2 = 30, α = 1, ui = (χ2(3) − 3)/

√
6

normal tlarge−n tlarge−K telliplarge−K tnonnormal
large−K

X05 -1.65 -2.60 -2.02 -2.02 -2.02
X10 -1.28 -1.96 -1.51 -1.51 -1.51

MEDN 0 0.00 0.00 0.00 0.00
X90 1.28 1.23 0.95 0.95 0.95
X95 1.65 1.43 1.13 1.13 1.13

P (t < z05) 5.0% 13.6% 8.4% 8.4% 8.5%
P (t > z95) 5.0% 1.8% 0.2% 0.2% 0.2%

P (|t| > z975) 5.0% 10.2% 5.5% 5.5% 5.5%
P (|t| > z95) 10.0% 15.4% 8.7% 8.6% 8.6%

Table 4B: Null distributions of t-ratios:
n − K = 100, K2 = 30, δ2 = 30, α = 1, ui = t(5)
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