550 research outputs found

    Simulations of the Interaction Region in a Photon-Photon Collider

    Get PDF
    The status and initial performance of a simulation program CAIN for interaction region of linear colliders is described. The program is developed to be applicable for e+e-, e-e-, e-gamma and gamma-gamma linear colliders. As an example of an application, simulation of a gamma-gamma collider option of NLC is reported.Comment: 16 pages, 6 eps figures, use epsf.st

    Photoemission Quasi-Particle Spectra of Sr2_2RuO4_4

    Get PDF
    Multi-band quasi-particle calculations based on perturbation theory and dynamical mean field methods show that the creation of a photoemission hole state in Sr2_2RuO4_4 is associated with a highly anisotropic self-energy. Since the narrow Ru-derived dxz,yzd_{xz,yz} bands are more strongly distorted by Coulomb correlations than the wide dxyd_{xy} band, charge is partially transferred from dxz,yzd_{xz,yz} to dxyd_{xy}, thereby shifting the dxyd_{xy} van Hove singularity close to the Fermi level.Comment: 4 pages, to be published in PRB Rapid Com

    Room temperature ferromagnetic behavior in the hollandite-type titanium oxide

    Get PDF
    A hollandite-type K(x)Ti(8)O(16) polycrystalline sample has been prepared and studied by magnetization, resistivity and x-ray photoelectron spectroscopy (XPS). Room temperature ferromagnetic behavior is observed in the magnetic hysteresis measurement. The sample shows a semiconductive temperature dependence in the resistivity measurement. Analysis of the Ti 2p(3/2) core-level XPS spectrum indicates that the titanium ions have a mixed valence of Ti(4+) and Ti(3+). In addition, the valence band spectrum reveals that the 3d electrons tend to localize on Ti(3+) ions in the hollandite-type TiO(2) lattice. Also, analysis of the valence band spectrum shows that the prepared sample is a wide-gap oxide with a band gap of 3.6 eV. These results indicate that the present hollandite-type K(x)Ti(8)O(16) sample can be classified as a TiO(2)-based wide-gap semiconductor with Curie temperature above room temperature. Room temperature ferromagnetism (RTFM) decreases in the sample prepared under a strong reducing gas atmosphere, accompanied with the decrease in the resistivity. The results imply that the localized 3d electrons are responsible for the RTFM of the K(x)Ti(8)O(16) sample

    ILC Operating Scenarios

    Full text link
    The ILC Technical Design Report documents the design for the construction of a linear collider which can be operated at energies up to 500 GeV. This report summarizes the outcome of a study of possible running scenarios, including a realistic estimate of the real time accumulation of integrated luminosity based on ramp-up and upgrade processes. The evolution of the physics outcomes is emphasized, including running initially at 500 GeV, then at 350 GeV and 250 GeV. The running scenarios have been chosen to optimize the Higgs precision measurements and top physics while searching for evidence for signals beyond the standard model, including dark matter. In addition to the certain precision physics on the Higgs and top that is the main focus of this study, there are scientific motivations that indicate the possibility for discoveries of new particles in the upcoming operations of the LHC or the early operation of the ILC. Follow-up studies of such discoveries could alter the plan for the centre-of-mass collision energy of the ILC and expand the scientific impact of the ILC physics program. It is envisioned that a decision on a possible energy upgrade would be taken near the end of the twenty year period considered in this report

    Metallic phase in stoichiometric CeOBiS 2 revealed by space-resolved ARPES

    Get PDF
    Recently CeOBiS2 system without any fluorine doping is found to show superconductivity posing question on its origin. Using space resolved ARPES we have found a metallic phase embedded in the morphological defects and at the sample edges of stoichiometric CeOBiS2. While bulk of the sample is semiconducting, the embedded metallic phase is characterized by the usual electron pocket at X point, similar to the Fermi surface of doped BiS2-based superconductors. Typical size of the observed metallic domain is larger than the superconducting correlation length of the system suggesting that the observed superconductivity in undoped CeOBiS2 might be due to this embedded metallic phase at the defects. The results also suggest a possible way to develop new systems by manipulation of the defects in these chalcogenides with structural instability

    Superconductivity at 5.2 K in ZrTe3 polycrystals and the effect of Cu, Ag intercalation

    Full text link
    We report the occurrence of superconductivity in polycrystalline samples of ZrTe3 at 5.2 K temperature at ambient pressure. The superconducting state coexists with the charge density wave (CDW) phase, which sets in at 63K. The intercalation of Cu or Ag, does not have any bearing on the superconducting transition temperature but suppresses the CDW state. The feature of CDW anomaly in these compounds is clearly seen in the DC magnetization data. Resistivity data is analysed to estimate the relative loss of carriers and reduction in the nested Fermi surface area upon CDW formation in the ZrTe3 and the intercalated compounds.Comment: 5 pages, 8 figure

    Angle-resolved photoemission observation of the superconducting-gap minimum and its relation to the nesting vector in the phonon-mediated superconductor YNi<sub>2</sub>B<sub>2</sub>C

    Get PDF
    We have performed ultrahigh-resolution angle-resolved photoemission spectroscopy to directly study the large superconducting (SC) gap anisotropy of YNi2B2C. We succeed in measuring momentum (k) dependence of SC gap for individual Fermi surface (FS) sheets, which demonstrates complexity of SC gap in a phonon-mediated superconductor. Within measured k regions on FS sheets, we find a pointlike minimum of SC gap, whose k positions can be connected by the known nesting vector. This shows close correlation between the nesting vector and node formation
    • …
    corecore