166 research outputs found
Finite automata with advice tapes
We define a model of advised computation by finite automata where the advice
is provided on a separate tape. We consider several variants of the model where
the advice is deterministic or randomized, the input tape head is allowed
real-time, one-way, or two-way access, and the automaton is classical or
quantum. We prove several separation results among these variants, demonstrate
an infinite hierarchy of language classes recognized by automata with
increasing advice lengths, and establish the relationships between this and the
previously studied ways of providing advice to finite automata.Comment: Corrected typo
Preparation of M-0 metal/alumina-pillared mica composites (M = Cu, Ni) by in situ reduction of interlayer M2+ ions of alumina-pillared fluorine micas
ArticleMATERIALS RESEARCH BULLETIN. 42(12): 2143-2149 (2007)journal articl
Quantum Optimization Problems
Krentel [J. Comput. System. Sci., 36, pp.490--509] presented a framework for
an NP optimization problem that searches an optimal value among
exponentially-many outcomes of polynomial-time computations. This paper expands
his framework to a quantum optimization problem using polynomial-time quantum
computations and introduces the notion of an ``universal'' quantum optimization
problem similar to a classical ``complete'' optimization problem. We exhibit a
canonical quantum optimization problem that is universal for the class of
polynomial-time quantum optimization problems. We show in a certain relativized
world that all quantum optimization problems cannot be approximated closely by
quantum polynomial-time computations. We also study the complexity of quantum
optimization problems in connection to well-known complexity classes.Comment: date change
Preparation of novel porous solids from alumina-pillared fluorine micas by acid-treatment
ArticleMICROPOROUS AND MESOPOROUS MATERIALS. 111(1-3): 285-291 (2008)journal articl
An Algorithmic Argument for Nonadaptive Query Complexity Lower Bounds on Advised Quantum Computation
This paper employs a powerful argument, called an algorithmic argument, to
prove lower bounds of the quantum query complexity of a multiple-block ordered
search problem in which, given a block number i, we are to find a location of a
target keyword in an ordered list of the i-th block. Apart from much studied
polynomial and adversary methods for quantum query complexity lower bounds, our
argument shows that the multiple-block ordered search needs a large number of
nonadaptive oracle queries on a black-box model of quantum computation that is
also supplemented with advice. Our argument is also applied to the notions of
computational complexity theory: quantum truth-table reducibility and quantum
truth-table autoreducibility.Comment: 16 pages. An extended abstract will appear in the Proceedings of the
29th International Symposium on Mathematical Foundations of Computer Science,
Lecture Notes in Computer Science, Springer-Verlag, Prague, August 22-27,
200
Characterization of polycrystalline SiC films grown by HW-CVD using silicon tetrafluoride
ArticleTHIN SOLID FILMS. 516(5): 637-640 (2008)journal articl
A Dichotomy Theorem for the Approximate Counting of Complex-Weighted Bounded-Degree Boolean CSPs
We determine the computational complexity of approximately counting the total
weight of variable assignments for every complex-weighted Boolean constraint
satisfaction problem (or CSP) with any number of additional unary (i.e., arity
1) constraints, particularly, when degrees of input instances are bounded from
above by a fixed constant. All degree-1 counting CSPs are obviously solvable in
polynomial time. When the instance's degree is more than two, we present a
dichotomy theorem that classifies all counting CSPs admitting free unary
constraints into exactly two categories. This classification theorem extends,
to complex-weighted problems, an earlier result on the approximation complexity
of unweighted counting Boolean CSPs of bounded degree. The framework of the
proof of our theorem is based on a theory of signature developed from Valiant's
holographic algorithms that can efficiently solve seemingly intractable
counting CSPs. Despite the use of arbitrary complex weight, our proof of the
classification theorem is rather elementary and intuitive due to an extensive
use of a novel notion of limited T-constructibility. For the remaining degree-2
problems, in contrast, they are as hard to approximate as Holant problems,
which are a generalization of counting CSPs.Comment: A4, 10pt, 20 pages. This revised version improves its preliminary
version published under a slightly different title in the Proceedings of the
4th International Conference on Combinatorial Optimization and Applications
(COCOA 2010), Lecture Notes in Computer Science, Springer, Vol.6508 (Part I),
pp.285--299, Kailua-Kona, Hawaii, USA, December 18--20, 201
Method of convex rigid frames and applications in studies of multipartite quNit pure-states
In this Letter we suggest a method of convex rigid frames in the studies of
the multipartite quNit pure-states. We illustrate what are the convex rigid
frames and what is the method of convex rigid frames. As the applications we
use this method to solve some basic problems and give some new results (three
theorems): The problem of the partial separability of the multipartite quNit
pure-states and its geometric explanation; The problem of the classification of
the multipartite quNit pure-states, and give a perfect explanation of the local
unitary transformations; Thirdly, we discuss the invariants of classes and give
a possible physical explanation.Comment: 6 pages, no figur
Quantum Computation Relative to Oracles
The study of the power and limitations of quantum computation remains a major challenge in complexity theory. Key questions revolve around the quantum complexity classes EQP, BQP, NQP, and their derivatives. This paper presents new relativized worlds in which (i) co-RP is not a subset of NQE, (ii) P=BQP and UP=EXP, (iii) P=EQP and RP=EXP, and (iv) EQP is not a subset of the union of Sigma{p}{2} and Pi{p}{2}. We also show a partial answer to the question of whether Almost-BQP=BQP
- …