734 research outputs found

    Color Fields on the Light-Shell

    Get PDF
    We study the classical color radiation from very high energy collisions that produce colored particles. In the extreme high energy limit, the classical color fields are confined to a light-shell expanding at cc and are associated with a non-linear σ\sigma-model on the 2D light-shell with specific symmetry breaking terms. We argue that the quantum version of this picture exhibits asymptotic freedom and may be a useful starting point for an effective light-shell theory of the structure between the jets at a very high energy collider.Comment: 11 pages, no figure

    Gauging of Geometric Actions and Integrable Hierarchies of KP Type

    Get PDF
    This work consist of two interrelated parts. First, we derive massive gauge-invariant generalizations of geometric actions on coadjoint orbits of arbitrary (infinite-dimensional) groups GG with central extensions, with gauge group HH being certain (infinite-dimensional) subgroup of GG. We show that there exist generalized ``zero-curvature'' representation of the pertinent equations of motion on the coadjoint orbit. Second, in the special case of GG being Kac-Moody group the equations of motion of the underlying gauged WZNW geometric action are identified as additional-symmetry flows of generalized Drinfeld-Sokolov integrable hierarchies based on the loop algebra {\hat \cG}. For {\hat \cG} = {\hat {SL}}(M+R) the latter hiearchies are equivalent to a class of constrained (reduced) KP hierarchies called {\sl cKP}_{R,M}, which contain as special cases a series of well-known integrable systems (mKdV, AKNS, Fordy-Kulish, Yajima-Oikawa etc.). We describe in some detail the loop algebras of additional (non-isospectral) symmetries of {\sl cKP}_{R,M} hierarchies. Apart from gauged WZNW models, certain higher-dimensional nonlinear systems such as Davey-Stewartson and NN-wave resonant systems are also identified as additional symmetry flows of {\sl cKP}_{R,M} hierarchies. Along the way we exhibit explicitly the interrelation between the Sato pseudo-differential operator formulation and the algebraic (generalized) Drinfeld-Sokolov formulation of {\sl cKP}_{R,M} hierarchies. Also we present the explicit derivation of the general Darboux-B\"acklund solutions of {\sl cKP}_{R,M} preserving their additional (non-isospectral) symmetries, which for R=1 contain among themselves solutions to the gauged SL(M+1)/U(1)×SL(M)SL(M+1)/U(1)\times SL(M) WZNW field equations.Comment: LaTeX209, 47 page

    Exact Drude weight for the one-dimensional Hubbard model at finite temperatures

    Full text link
    The Drude weight for the one-dimensional Hubbard model is investigated at finite temperatures by using the Bethe ansatz solution. Evaluating finite-size corrections to the thermodynamic Bethe ansatz equations, we obtain the formula for the Drude weight as the response of the system to an external gauge potential. We perform low-temperature expansions of the Drude weight in the case of half-filling as well as away from half-filling, which clearly distinguish the Mott-insulating state from the metallic state.Comment: 9 pages, RevTex, To appear in J. Phys.

    Chiral non-linear sigma-models as models for topological superconductivity

    Full text link
    We study the mechanism of topological superconductivity in a hierarchical chain of chiral non-linear sigma-models (models of current algebra) in one, two, and three spatial dimensions. The models have roots in the 1D Peierls-Frohlich model and illustrate how the 1D Frohlich's ideal conductivity extends to a genuine superconductivity in dimensions higher than one. The mechanism is based on the fact that a point-like topological soliton carries an electric charge. We discuss a flux quantization mechanism and show that it is essentially a generalization of the persistent current phenomenon, known in quantum wires. We also discuss why the superconducting state is stable in the presence of a weak disorder.Comment: 5 pages, revtex, no figure
    corecore