403 research outputs found

    Evaluation of the microseismic motion at the KAGRA site based on the ocean wave data

    Full text link
    The microseismic motion, which is the ambient ground vibration caused by ocean waves, affects ground-based gravitational detectors. In this study, we characterized the properties of the microseismic motion at the KAGRA site and the ocean waves at 13 coasts of Japan, such as the seasonal variation and the correlation between them. As a result, it almost succeeded to explain the microseismic motion at the KAGRA site by the principal components of the ocean wave data. One possible application of this study is the microseismic forecast and its example is also shown

    Accretion-powered Stellar Winds as a Solution to the Stellar Angular Momentum Problem

    Get PDF
    We compare the angular momentum extracted by a wind from a pre-main-sequence star to the torques arising from the interaction between the star and its Keplerian accretion disk. We find that the wind alone can counteract the spin-up torque from mass accretion, solving the mystery of why accreting pre-main-sequence stars are observed to spin at less than 10% of break-up speed, provided that the mass outflow rate in the stellar winds is ~10% of the accretion rate. We suggest that such massive winds will be driven by some fraction ϵ\epsilon of the accretion power. For observationally constrained typical parameters of classical T-Tauri stars, ϵ\epsilon needs to be between a few and a few tens of percent. In this scenario, efficient braking of the star will terminate simultaneously with accretion, as is usually assumed to explain the rotation velocities of stars in young clusters.Comment: Accepted by ApJ Letter

    Accretion-Powered Stellar Winds II: Numerical Solutions for Stellar Wind Torques

    Get PDF
    [Abridged] In order to explain the slow rotation observed in a large fraction of accreting pre-main-sequence stars (CTTSs), we explore the role of stellar winds in torquing down the stars. For this mechanism to be effective, the stellar winds need to have relatively high outflow rates, and thus would likely be powered by the accretion process itself. Here, we use numerical magnetohydrodynamical simulations to compute detailed 2-dimensional (axisymmetric) stellar wind solutions, in order to determine the spin down torque on the star. We explore a range of parameters relevant for CTTSs, including variations in the stellar mass, radius, spin rate, surface magnetic field strength, the mass loss rate, and wind acceleration rate. We also consider both dipole and quadrupole magnetic field geometries. Our simulations indicate that the stellar wind torque is of sufficient magnitude to be important for spinning down a ``typical'' CTTS, for a mass loss rate of ∼10−9M⊙\sim 10^{-9} M_\odot yr−1^{-1}. The winds are wide-angle, self-collimated flows, as expected of magnetic rotator winds with moderately fast rotation. The cases with quadrupolar field produce a much weaker torque than for a dipole with the same surface field strength, demonstrating that magnetic geometry plays a fundamental role in determining the torque. Cases with varying wind acceleration rate show much smaller variations in the torque suggesting that the details of the wind driving are less important. We use our computed results to fit a semi-analytic formula for the effective Alfv\'en radius in the wind, as well as the torque. This allows for considerable predictive power, and is an improvement over existing approximations.Comment: Accepted for publication in Ap

    Probing the Edge of the Solar System: Formation of an Unstable Jet-Sheet

    Full text link
    The Voyager spacecraft is now approaching the edge of the solar system. Near the boundary between the solar system and the interstellar medium we find that an unstable ``jet-sheet'' forms. The jet-sheet oscillates up and down due to a velocity shear instability. This result is due to a novel application of a state-of-art 3D Magnetohydrodynamic (MHD) code with a highly refined grid. We assume as a first approximation that the solar magnetic and rotation axes are aligned. The effect of a tilt of the magnetic axis with respect to the rotation axis remains to be seen. We include in the model self-consistently magnetic field effects in the interaction between the solar and interstellar winds. Previous studies of this interaction had poorer spatial resolution and did not include the solar magnetic field. This instability can affect the entry of energetic particles into the solar system and the intermixing of solar and interstellar material. The same effect found here is predicted for the interaction of rotating magnetized stars possessing supersonic winds and moving with respect to the interstellar medium, such as O stars.Comment: 9 pages, 4 figures, accepted for publication in ApJ
    • …
    corecore