12,129 research outputs found

    Restoration of multichannel microwave radiometric images

    Get PDF
    A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Some of its properties and limitations are also presented. The selection of appropriate constraints was emphasized in a practical application. Multichannel microwave images, each having different spatial resolution, were restored to a common highest resolution to demonstrate the effectiveness of the method. Both noise-free and noisy images were used in this investigation

    Current-driven vortex dynamics in untwinned superconducting single crystals

    Get PDF
    Current-driven vortex dynamics of type-II superconductors in the weak-pinning limit is investigated by quantitatively studying the current-dependent vortex dissipation of an untwinned YBa2Cu3O7 single crystal. For applied current densities (J) substantially larger than the critical current density (Jc), non-linear resistive peaks appear below the thermodynamic first-order vortex-lattice melting transition temperature (Tm), in contrast to the resistive hysteresis in the low-current limit (J < Jc). These resistive peaks are quantitatively analysed in terms of the current-driven coherent and plastic motion of vortex bundles in the vortex-solid phase, and the non-linear current - voltage characteristics are found to be consistent with the collective flux-creep model. The effects of high-density random point defects on the vortex dynamics are also investigated via proton irradiation of the same single crystal. Neither resistive hysteresis at low currents nor peak effects at high currents are found after the irradiation. Furthermore, the current-voltage characteristics within the instrumental resolution become completely ohmic over a wide range of currents and temperatures, despite theoretical predictions of much larger Jc-values for the given experimental variables. This finding suggests that the vortex-glass phase, a theoretically proposed low-temperature vortex state which is stabilized by point disorder and has a vanishing resistivity, may become unstable under applied currents significantly smaller than the theoretically predicted Jc. More investigation appears necessary in order to resolve this puzzling issue

    Dynamic Response of an Embedded Structure Generated By a SH-Wave

    Get PDF
    In this investigation, a mathematical hybrid model developed previously is employed to study soil-structure interaction of embedded structure. In the analysis, the near field including the embedded structure and its surrounding foundation soil is modelled with a conventional finite element mesh, and the far field is modelled as a semi-infinite medium with a hemi-spherical pit. The impedance functions at the nodes around the special element, which have been determined analytically, can represent the behavior of outgoing propagation of waves. A concept of superposition is proposed to analyze the response of an embedded structure excited by an incoming SH-wave. The governing equations of the whole system will be formulated by enforcing the compatibility and equilibrium conditions at the nodes of the finite mesh. Basing on these equations, the response of the embedded structure and its surrounding ground can be determined accordingly. Numerical results have been obtained, and correlations with available solutions using continuum approaches are studied. The effects of the embedment on the responses are also shown and discussed

    Resolution enhancement of multichannel microwave imagery from the Nimbus-7 SMMR for maritime rainfall analysis

    Get PDF
    A restoration of the 37, 21, 18, 10.7, and 6.6 GHz satellite imagery from the scanning multichannel microwave radiometer (SMMR) aboard Nimbus-7 to 22.2 km resolution is attempted using a deconvolution method based upon nonlinear programming. The images are deconvolved with and without the aid of prescribed constraints, which force the processed image to abide by partial a priori knowledge of the high-resolution result. The restored microwave imagery may be utilized to examined the distribution of precipitating liquid water in marine rain systems

    Electrically controlled optical latch and switch requires less current

    Get PDF
    Electrically controlled optical latch consists of a sensitive phototransistor and a solid-state light source. This design requires less current to activate an optically activated switch than in prior art
    corecore