7 research outputs found
XMM-Newton Observation of an X-ray Trail Between the Spiral Galaxy NGC6872 and the Central Elliptical NGC6876 in the Pavo Group
We present XMM-Newton observations of a trail of enhanced X-rayemission
extending along the 8'.7 X 4' region between the spiral NGC6872 and the
dominant elliptical NGC6876 in the Pavo Group,the first known X-ray trail
associated with a spiral galaxy in a poor galaxy group and, with projected
length of 90 kpc, one of the longest X-ray trails observed in any system. The
X-ray surface brightness in the trail region is roughly constant beyond ~20 kpc
of NGC6876 in the direction of NGC6872. The trail is hotter (~ 1 keV) than the
undisturbed Pavo IGM (~0.5 keV) and has low metal abundances (0.2 Zsolar). The
0.5-2 keV luminosity of the trail, measured using a 67 X 90 kpc rectangular
region, is 6.6 X 10^{40} erg/s. We compare the properties of gas in the trail
to the spectral properties of gas in the spiral NGC6872 and in the elliptical
NGC6876 to constrain its origin. We suggest that the X-ray trail is either IGM
gas gravitationally focused into a Bondi-Hoyle wake, a thermal mixture of ~64%
Pavo IGM gas with ~36% galaxy gas that has been removed from the spiral NGC6872
by turbulent viscous stripping, or both, due to the spiral's supersonic motion
at angle xi ~ 40 degrees with respect to the plane of the sky, past the Pavo
group center (NGC6876) through the densest region of the Pavo IGM. Assuming xi
= 40 degrees and a filling factor eta in a cylindrical volume with radius 33
kpc and projected length 90 kpc, the mean electron density and total hot gas
mass in the trail is 9.5 X 10^{-4}*eta^{-1/2} cm^{-3} and 1.1 X
10^{10}*eta^{1/2} Msolar, respectively.Comment: typos corrected in Eq. 7 & 8, figures and discussion unchanged, 39
pages, 11 postscript figures, submitted to Ap
Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling
Tissue morphogenesis is driven by mechanical forces that elicit changes in cell size, shape and motion. The extent by which forces deform tissues critically depends on the rheological properties of the recipient tissue. Yet, whether and how dynamic changes in tissue rheology affect tissue morphogenesis and how they are regulated within the developing organism remain unclear. Here, we show that blastoderm spreading at the onset of zebrafish morphogenesis relies on a rapid, pronounced and spatially patterned tissue fluidization. Blastoderm fluidization is temporally controlled by mitotic cell rounding-dependent cell–cell contact disassembly during the last rounds of cell cleavages. Moreover, fluidization is spatially restricted to the central blastoderm by local activation of non-canonical Wnt signalling within the blastoderm margin, increasing cell cohesion and thereby counteracting the effect of mitotic rounding on contact disassembly. Overall, our results identify a fluidity transition mediated by loss of cell cohesion as a critical regulator of embryo morphogenesis