761 research outputs found

    An early medieval lead-smelting bole from Banc Tynddol, Cwmystwyth, Ceredigion

    Get PDF
    Excavations in 2002 at Cwmystwyth, in Central Wales, found an ancient lead smelting site. There are remains of the medieval and the Roman periods. This paper describes in brief the excavation of the medieval lead bole (Timberlake 2002a) but also provides an archaeological reconstruction of this and details of an experimental lead smelt carried out at the site in 2003 (by ST). The analytical study (by LA) is of the medieval metallurgical debris excavated in 2002, mostly slag, but also ore and lead. The aim was to understand the raw material, the metal produced and the smelting process. The ore smelted was predominantly galena but with no detectable silver, showing it was probably exploited to produce lead. The extremely high sulphur content of the slag indicates that the ore was not roasted before smelting. It is argued that the medieval activity was small-scale, smelting a very rich ore. The furnaces apparently did not require much capital investment, enabling a short-lived and/or exploratory smelting operation

    Interaction and Localization of One-electron Orbitals in an Organic Molecule: Fictitious Parameter Analysis for Multi-physics Simulations

    Full text link
    We present a new methodology to analyze complicated multi-physics simulations by introducing a fictitious parameter. Using the method, we study quantum mechanical aspects of an organic molecule in water. The simulation is variationally constructed from the ab initio molecular orbital method and the classical statistical mechanics with the fictitious parameter representing the coupling strength between solute and solvent. We obtain a number of one-electron orbital energies of the solute molecule derived from the Hartree-Fock approximation, and eigenvalue-statistical analysis developed in the study of nonintegrable systems is applied to them. Based on the results, we analyze localization properties of the electronic wavefunctions under the influence of the solvent.Comment: 4 pages, 5 figures, the revised version will appear in J. Phys. Soc. Jpn. Vol.76 (No.1

    Computation in Classical Mechanics

    Full text link
    There is a growing consensus that physics majors need to learn computational skills, but many departments are still devoid of computation in their physics curriculum. Some departments may lack the resources or commitment to create a dedicated course or program in computational physics. One way around this difficulty is to include computation in a standard upper-level physics course. An intermediate classical mechanics course is particularly well suited for including computation. We discuss the ways we have used computation in our classical mechanics courses, focusing on how computational work can improve students' understanding of physics as well as their computational skills. We present examples of computational problems that serve these two purposes. In addition, we provide information about resources for instructors who would like to include computation in their courses.Comment: 6 pages, 3 figures, submitted to American Journal of Physic

    Classical Scattering for a driven inverted Gaussian potential in terms of the chaotic invariant set

    Full text link
    We study the classical electron scattering from a driven inverted Gaussian potential, an open system, in terms of its chaotic invariant set. This chaotic invariant set is described by a ternary horseshoe construction on an appropriate Poincare surface of section. We find the development parameters that describe the hyperbolic component of the chaotic invariant set. In addition, we show that the hierarchical structure of the fractal set of singularities of the scattering functions is the same as the structure of the chaotic invariant set. Finally, we construct a symbolic encoding of the hierarchical structure of the set of singularities of the scattering functions and use concepts from the thermodynamical formalism to obtain one of the measures of chaos of the fractal set of singularities, the topological entropy.Comment: accepted in Phy. Rev.

    Haploinsufficiency of SF3B2 causes craniofacial microsomia

    Get PDF
    Craniofacial microsomia (CFM) is the second most common congenital facial anomaly, yet its genetic etiology remains unknown. We perform whole-exome or genome sequencing of 146 kindreds with sporadic (n = 138) or familial (n = 8) CFM, identifying a highly significant burden of loss of function variants in SF3B2 (P = 3.8 × 10−10), a component of the U2 small nuclear ribonucleoprotein complex, in probands. We describe twenty individuals from seven kindreds harboring de novo or transmitted haploinsufficient variants in SF3B2. Probands display mandibular hypoplasia, microtia, facial and preauricular tags, epibulbar dermoids, lateral oral clefts in addition to skeletal and cardiac abnormalities. Targeted morpholino knockdown of SF3B2 in Xenopus results in disruption of cranial neural crest precursor formation and subsequent craniofacial cartilage defects, supporting a link between spliceosome mutations and impaired neural crest development in congenital craniofacial disease. The results establish haploinsufficient variants in SF3B2 as the most prevalent genetic cause of CFM, explaining ~3% of sporadic and ~25% of familial cases

    Scattering properties of a cut-circle billiard waveguide with two conical leads

    Full text link
    We examine a two-dimensional electron waveguide with a cut-circle cavity and conical leads. By considering Wigner delay times and the Landauer-B\"{u}ttiker conductance for this system, we probe the effects of the closed billiard energy spectrum on scattering properties in the limit of weakly coupled leads. We investigate how lead placement and cavity shape affect these conductance and time delay spectra of the waveguide.Comment: 18 pages, 11 figures, accepted for publication in Phys. Rev. E (Jan. 2001

    Performance projections for the lithium tokamak experiment (LTX)

    Get PDF
    Use of a large-area liquid lithium limiter in the CDX-U tokamak produced the largest relative increase (an enhancement factor of 5-10) in Ohmic tokamak confinement ever observed. The confinement results from CDX-U do not agree with existing scaling laws, and cannot easily be projected to the new lithium tokamak experiment (LTX). Numerical simulations of CDX-U low recycling discharges have now been performed with the ASTRA-ESC code with a special reference transport model suitable for a diffusion-based confinement regime, incorporating boundary conditions for nonrecycling walls, with fuelling via edge gas puffing. This model has been successful at reproducing the experimental values of the energy confinement (4-6 ms), loop voltage (<0.5 V), and density for a typical CDX-U lithium discharge. The same transport model has also been used to project the performance of the LTX, in Ohmic operation, or with modest neutral beam injection (NBI). NBI in LTX, with a low recycling wall of liquid lithium, is predicted to result in core electron and ion temperatures of 1-2 keV, and energy confinement times in excess of 50 ms. Finally, the unique design features of LTX are summarized

    A network approach for managing ecosystem services and improving food and nutrition security on smallholder farms

    Get PDF
    Smallholder farmers are some of the poorest and most food insecure people on Earth. Their high nutritional and economic reliance on home-grown produce makes them particularly vulnerable to environmental stressors such as pollinator loss or climate change which threaten agricultural productivity. Improving smallholder agriculture in a way that is environmentally sustainable and resilient to climate change is a key challenge of the 21st century. Ecological intensification, whereby ecosystem services are managed to increase agricultural productivity, is a promising solution for smallholders. However, smallholder farms are complex socio-ecological systems with a range of social, ecological and environmental factors interacting to influence ecosystem service provisioning. To truly understand the functioning of a smallholder farm and identify the most effective management options to support household food and nutrition security, a holistic, systems-based understanding is required. In this paper, we propose a network approach to understand, visualise and model the complex interactions occurring among wild species, crops and people on smallholder farms. Specifically, we demonstrate how networks may be used to (a) identify wild species with a key role in supporting, delivering or increasing the resilience of an ecosystem service; (b) quantify the value of an ecosystem service in a way that is relevant to the food and nutrition security of smallholders; and (c) understand the social interactions that influence the management of shared ecosystem services. Using a case study based on data from rural Nepal, we demonstrate how this framework can be used to connect wild plants, pollinators and crops to key nutrients consumed by humans. This allows us to quantify the nutritional value of an ecosystem service and identify the wild plants and pollinators involved in its provision, as well as providing a framework to predict the effects of environmental change on human nutrition. Our framework identifies mechanistic links between ecosystem services and the nutrients consumed by smallholder farmers and highlights social factors that may influence the management of these services. Applying this framework to smallholder farms in a range of socio-ecological contexts may provide new, sustainable and equitable solutions to smallholder food and nutrition security. A free Plain Language Summary can be found within the Supporting Information of this article

    Dynamics of quantum systems

    Get PDF
    A relation between the eigenvalues of an effective Hamilton operator and the poles of the SS matrix is derived which holds for isolated as well as for overlapping resonance states. The system may be a many-particle quantum system with two-body forces between the constituents or it may be a quantum billiard without any two-body forces. Avoided crossings of discrete states as well as of resonance states are traced back to the existence of branch points in the complex plane. Under certain conditions, these branch points appear as double poles of the SS matrix. They influence the dynamics of open as well as of closed quantum systems. The dynamics of the two-level system is studied in detail analytically as well as numerically.Comment: 21 pages 7 figure
    • …
    corecore