533 research outputs found
Sturm bounds for Siegel modular forms of degree 2 and odd weights
We correct the proof of the theorem in the previous paper presented by Kikuta, which concerns Sturm bounds for Siegel modular forms of degree and of even weights modulo a prime number dividing . We give also Sturm bounds for them of odd weights for any prime numbers, and we prove their sharpness. The results cover the case where Fourier coefficients are algebraic numbers
Enhancement of Superconducting Transition Temperature Due to Antiferromagnetic Spin Fluctuations in Iron-pnictides LaFe(As_{1-x}P_x)(O_{1-y}F_y) : 31P-NMR Studies
Systematic P-NMR studies on LaFe(As_{1-x}P_x)(O_{1-y}F_y) with y=0.05 and 0.1
have revealed that the antiferromagnetic spin fluctuations (AFMSFs) at low
energies are markedly enhanced around x=0.6 and 0.4, respectively, and as a
result, Tc exhibits respective peaks at 24 K and 27 K against the
P-substitution for As. This result demonstrates that the AFMSFs are responsible
for the increase in Tc for LaFe(As_{1-x}P_x)(O_{1-y}F_y) as a primary mediator
of the Cooper pairing. From a systematic comparison of AFMSFs with a series of
(La_{1-z}Y_z)FeAsO_{\delta} compounds in which Tc reaches 50 K for z=0.95, we
remark that a moderate development of AFMSFs causes the Tc to increase up to 50
K under the condition that the local lattice parameters of FeAs tetrahedron
approaches those of the regular tetrahedron. We propose that the T_c of
Fe-pnictides exceeding 50 K is maximized under an intimate collaboration of the
AFMSFs and other factors originating from the optimization of the local
structure.Comment: 6 pages, 8 figures, Accepted for publication in Phys. Rev.
Fast algorithm for calculating two-photon absorption spectra
We report a numerical calculation of the two-photon absorption coefficient of
electrons in a binding potential using the real-time real-space higher-order
difference method. By introducing random vector averaging for the intermediate
state, the task of evaluating the two-dimensional time integral is reduced to
calculating two one-dimensional integrals. This allows the reduction of the
computation load down to the same order as that for the linear response
function. The relative advantage of the method compared to the straightforward
multi-dimensional time integration is greater for the calculation of non-linear
response functions of higher order at higher energy resolution.Comment: 4 pages, 2 figures. It will be published in Phys. Rev. E on 1, March,
199
Evidence for an oscillatory signature in atmospheric neutrino oscillation
Muon neutrino disappearance probability as a function of neutrino flight
length L over neutrino energy E was studied. A dip in the L/E distribution was
observed in the data, as predicted from the sinusoidal flavor transition
probability of neutrino oscillation. The observed L/E distribution constrained
nu_mu nu_tau neutrino oscillation parameters; 1.9x10^-3 < Delta m^2 <
3.0x10^-3 eV^2 and \sin^2(2theta) > 0.90 at 90% confidence level.Comment: 5 pages, 5 figures, submitted to PR
Observation of the east-west anisotropy of the atmospheric neutrino flux
The east-west anisotropy, caused by the deflection of primary cosmic rays in
the Earth's magnetic field, is observed for the first time in the flux of
atmospheric neutrinos. Using a 45 kt-year exposure of the
Super-Kamiokande detector, 552 e-like and 633 mu-like horizontally-going
events are selected in the momentum range between 400 and 3000 MeV/c.
The azimuthal distribution of e-like and mu-like events agrees with the
expectation from atmospheric neutrino flux calculations that account for the
geomagnetic field, verifying that the geomagnetic field effects in the
production of atmospheric neutrinos in the GeV energy range are well
understood.Comment: 8 pages,3 figures revtex, submitted to PR
Constraints on neutrino oscillation parameters from the measurement of day-night solar neutrino fluxes at Super-Kamiokande
A search for day-night variations in the solar neutrino flux resulting from
neutrino oscillations has been carried out using the 504 day sample of solar
neutrino data obtained at Super-Kamiokande. The absence of a significant
day-night variation has set an absolute flux independent exclusion region in
the two neutrino oscillation parameter space.Comment: 11 pages, 3 figures, submitted to PRL, single-spacin
Evidence for oscillation of atmospheric neutrinos
We present an analysis of atmospheric neutrino data from a 33.0 kiloton-year
(535-day) exposure of the Super-Kamiokande detector. The data exhibit a zenith
angle dependent deficit of muon neutrinos which is inconsistent with
expectations based on calculations of the atmospheric neutrino flux.
Experimental biases and uncertainties in the prediction of neutrino fluxes and
cross sections are unable to explain our observation. The data are consistent,
however, with two-flavor nu_mu nu_tau oscillations with sin^2(2theta)>0.82
and 5x10^-4 < delta m^2 < 6x10^-3 eV^2 at 90% confidence level.Comment: 9 pages (two-column) with 4 figures. Small corrections to Eqn.4 and
Fig.3. Final version to appear in PR
Solar 8B and hep Neutrino Measurements from 1258 Days of Super-Kamiokande Data
Solar neutrino measurements from 1258 days of data from the Super-Kamiokande
detector are presented. The measurements are based on recoil electrons in the
energy range 5.0-20.0MeV. The measured solar neutrino flux is 2.32 +-
0.03(stat.) +0.08-0.07(sys.)*10^6cm^{-2}s^{-1}, which is
45.1+-0.5(stat.)+1.6-1.4(sys.)% of that predicted by the BP2000 SSM. The day vs
night flux asymmetry is 0.033+-0.022(stat.)+0.013-0.012(sys.). The recoil
electron energy spectrum is consistent with no spectral distortion
(\chi^2/d.o.f. = 19.0/18). The seasonal variation of the flux is consistent
with that expected from the eccentricity of the Earth's orbit (\chi^2/d.o.f. =
3.7/7). For the hep neutrino flux, we set a 90% C.L. upper limit of 40
*10^3cm^{-2}s^{-1}, which is 4.3 times the BP2000 SSM prediction.Comment: 7 pages, 5 figures, submitted to PRL (part of this paper
Calibration of Super-Kamiokande Using an Electron Linac
In order to calibrate the Super-Kamiokande experiment for solar neutrino
measurements, a linear accelerator (LINAC) for electrons was installed at the
detector. LINAC data were taken at various positions in the detector volume,
tracking the detector response in the variables relevant to solar neutrino
analysis. In particular, the absolute energy scale is now known with less than
1 percent uncertainty.Comment: 24 pages, 16 figures, Submitted to NIM
- …
