1,449 research outputs found

    Valence instability of cerium under pressure in the Kondo-like perovskite La0.1_{0.1}Ce0.4_{0.4}Sr0.5_{0.5}MnO3_3

    Full text link
    Effect of hydrostatic pressure and magnetic field on electrical resistance of the Kondo-like perovskite manganese oxide, La0.1_{0.1}Ce0.4_{0.4}Sr0.5_{0.5}MnO3_3 with a ferrimagnetic ground state, have been investigated up to 2.1 GPa and 9 T. In this compound, the Mn-moments undergo double exchange mediated ferromagnetic ordering at TCT_{\rm C} \sim 280 K and there is a resistance maximum, TmaxT_{\rm max} at about 130 K which is correlated with an antiferromagnetic ordering of {\it cerium} with respect to the Mn-sublattice moments. Under pressure, the TmaxT_{\rm max} shifts to lower temperature at a rate of dTmaxT_{max}/dPP = -162 K/GPa and disappears at a critical pressure PcP_{\rm c} \sim 0.9 GPa. Further, the coefficient, mm of logT-logT term due to Kondo scattering decreases linearly with increase of pressure showing an inflection point in the vicinity of PcP_{\rm c}. These results suggest that {\it cerium} undergoes a transition from Ce3+^{3+} state to Ce4+^{4+}/Ce3+^{3+} mixed valence state under pressure. In contrast to pressure effect, the applied magnetic field shifts TmaxT_{\rm max} to higher temperature presumably due to enhanced ferromagnetic Mn moments.Comment: to be published in Phys. Rev. B (rapid commun

    Model-Based Cross-Correlation Search for Gravitational Waves from Scorpius X-1

    Full text link
    We consider the cross-correlation search for periodic GWs and its potential application to the LMXB Sco X-1. This method coherently combines data from different detectors at the same time, as well as different times from the same or different detectors. By adjusting the maximum time offset between a pair of data segments to be coherently combined, one can tune the method to trade off sensitivity and computing costs. In particular, the detectable signal amplitude scales as the inverse fourth root of this coherence time. The improvement in amplitude sensitivity for a search with a coherence time of 1hr, compared with a directed stochastic background search with 0.25Hz wide bins is about a factor of 5.4. We show that a search of 1yr of data from Advanced LIGO and Advanced Virgo with a coherence time of 1hr would be able to detect GWs from Sco X-1 at the level predicted by torque balance over a range of signal frequencies from 30-300Hz; if the coherence time could be increased to 10hr, the range would be 20-500Hz. In addition, we consider several technical aspects of the cross-correlation method: We quantify the effects of spectral leakage and show that nearly rectangular windows still lead to the most sensitive search. We produce an explicit parameter-space metric for the cross-correlation search in general and as applied to a neutron star in a circular binary system. We consider the effects of using a signal template averaged over unknown amplitude parameters: the search is sensitive to a combination of the intrinsic signal amplitude and the inclination of the neutron star rotation axis, and the peak of the expected detection statistic is systematically offset from the true signal parameters. Finally, we describe the potential loss of SNR due to unmodelled effects such as signal phase acceleration within the Fourier transform timescale and gradual evolution of the spin frequency.Comment: 27 pages, 12 figures, 4 tables, pdflatex; synchronized to final version published in Phys Rev

    Does gravitational wave propagate in the five dimensional space-time with Kaluza-Klein monopole?

    Get PDF
    The behavior of small perturbations around the Kaluza-Klein monopole in the five dimensional space-time is investigated. The fact that the odd parity gravitational wave does not propagate in the five dimensional space-time with Kaluza-Klein monopole is found provided that the gravitational wave is constant in the fifth direction.Comment: 10 @ages, LATE

    Slit2 guides both precrossing and postcrossing callosal axons at the midline in vivo

    Get PDF
    Commissural axons generally cross the midline only once. In the Drosophila nerve cord and mouse spinal cord, commissural axons are guided by Slit only after they cross the midline, where Slit prevents these axons from recrossing the midline. In the developing corpus callosum, Slit2 expressed by the glial wedge guides callosal axons before they cross the midline, as they approach the corticoseptal boundary. These data highlighted a potential difference between the role of Slit2 in guiding commissural axons in the brain compared with the spinal cord. Here, we investigate whether Slit2 also guides callosal axons after they cross the midline. Because such questions cannot be addressed in conventional gene knock-out animals, we used in utero injections of antisense oligonucleotides to specifically deplete Slit2 on only one side of the brain. We used this technique together with a novel in vitro assay of hemisected brain slices to specifically analyze postcrossing callosal axons. We find that in the brain, unlike the spinal cord, Slit2 mediates both precrossing and postcrossing axonal guidance. Depletion of Slit2 on one side of the brain causes axons to defasciculate and, in some cases, to aberrantly enter the septum. Because these axons do not recross the midline, we conclude that the principle function of Slit2 at the cortical midline maybe to channel the axons along the correct path and possibly repel them away from the midline. We find no evidence that Slit2 prevents axons from recrossing the midline in the brain

    Photobase Generator Enabled Pitch Division: A Progress Report

    Get PDF
    Pitch division lithography (PDL) with a photobase generator (PBG) allows printing of grating images with twice the pitch of a mask. The proof-of-concept has been published in the previous paper[1, 2] and demonstrated by others[1]. Forty five nm half-pitch (HP) patterns were produced using a 90nm HP mask, but the image had line edge roughness (LER) that does not meet requirements. Efforts have been made to understand and improve the LER in this process. Challenges were summarized toward low LER and good performing pitch division. Simulations and analysis showed the necessity for an optical image that is uniform in the z direction in order for pitch division to be successful. Two-stage PBGs were designed for enhancement of resist chemical contrast. New pitch division resists with polymer-bound PAGs and PBGs, and various PBGs were tested. This paper focuses on analysis of the LER problems and efforts to improve patterning performance in pitch division lithography.Chemical Engineerin

    Investigations on the liquid crystalline phases of cation-induced condensed DNA

    Get PDF
    Viral and nonviral condensing agents are used in gene therapy to compact oligonucleotides and plasmid DNA into nanostructures for their efficient transport through the cell membranes. Whereas viral vectors are best by the toxic effects on the immune system, most of the nonviral delivery vehicles are not effective for use in clinical system. Recent investigations indicate that the supramolecular organization of DNA in the condensed state is liquid crystalline. The present level of understanding of the liquid crystalline phase of DNA is inadequate and a thorough investigation is required to understand the nature, stability, texture and the influence of various environmental conditions on the structure of the phase. The present study is mainly concerned with the physicochemical investigations on the liquid crystalline transitions during compaction of DNA by cationic species such as polyamines and metallic cations. As a preliminary to the above investigation, studies were conducted on the evolution of mesophase transitions of DNA with various cationic counterion species using polarized light microscopy. These studies indicated significant variations in the phase behaviour of DNA in the presence of Li and other ions. Apart from the neutralization of the charges on the DNA molecule, these ions are found to influence selectively the hydration sphere of DNA that in turn influences the induction and stabilization of the LC phases. The higher stability observed with the liquid crystalline phases of Li-DNA system could be useful in the production of nanostructured DNA. In the case of the polyamine, a structural specificity effect depending on the nature, charge and structure of the polyamine used has been found to be favoured in the crystallization of DNA
    corecore