101 research outputs found

    Magnetic damping in ferromagnetic/heavy-metal systems: The role of interfaces and the relation to proximity-induced magnetism

    Get PDF
    Damping and spin transport in spintronic multilayered systems continues to be a topic of active research. The enhancement of damping in ferromagnet (FM)/spacer layer (SL)/heavy-metal (HM) thin-film systems was studied for Co 25 Fe 75 / SL / Pt with a nonmagnetic (NM) SL of either Au or Cu with variable thickness, in order to understand the correlation with proximity-induced magnetism (PIM) in the HM. Structural, PIM and magnetic damping measurements were undertaken on the same samples. Specifically, secondary ion mass spectroscopy, element specific x-ray magnetic reflectivity and x-ray magnetic circular dichroism at the Pt and Au L 3 edges, and ferromagnetic resonance methods were used. With increasing thickness of a Cu or Au SL directly between the FM and the Pt layer, the Pt PIM and the damping both fall rapidly, with a relationship between damping and PIM that depends on the SL material. The PIM observed in the Au layer showed a complex dependence on the layer thickness, suggesting some hybridization with the Pt. The role of the number and location of interfaces on the damping was demonstrated with the addition of a SL within the Pt layer, which showed that the specific details of the NM/HM interface also affects the damping. The insertion of a Cu SL within the Pt showed a measurable increase in the overall enhancement of the damping while the insertion of a Au SL into Pt had almost no effect on the damping. Together these results demonstrate the role of both PIM and of additional interfaces in the enhancement of damping in FM/HM systems, which is not fully accounted for by existing theory

    Screening of Microorganisms for Biodegradation of Simazine Pollution (Obsolete Pesticide Azotop 50 WP)

    Get PDF
    The capability of environmental microorganisms to biodegrade simazine—an active substance of 2-chloro-s-triazine herbicides (pesticide waste since 2007)—was assessed. An enormous metabolic potential of microorganisms impels to explore the possibilities of using them as an alternative way for thermal and chemical methods of utilization. First, the biotope rich in microorganisms resistant to simazine was examined. Only the higher dose of simazine (100 mg/l) had an actual influence on quantity of bacteria and environmental fungi incubated on substrate with simazine. Most simazine-resistant bacteria populated activated sludge and biohumus (vermicompost); the biggest strain of resistant fungi was found in floral soil and risosphere soil of maize. Compost and biohumus were the sources of microorganisms which biodegraded simazine, though either of them was the dominant considering the quantity of simazine-resistant microorganisms. In both cases of periodic culture (microorganisms from biohumus and compost), nearly 100% of simazine (50 mg/l) was degraded (within 8 days). After the repeated enrichment culture with simazine, the rate of its degradation highly accelerated, and just after 24 h, the significant decrease of simazine (20% in compost and 80% in biohumus) was noted. Although a dozen attempts of isolating various strains responsible for biodegradation of simazine from compost and biohumus were performed, only the strain identified as Arthrobacter urefaciens (NC) was obtained, and it biodegraded simazine with almost 100% efficiency (within 4 days)

    Definition, aims, and implementation of GA2LEN/HAEi Angioedema Centers of Reference and Excellence

    Get PDF

    Multilayer Structures with Giant Magnetoresistance

    No full text
    The phenomenological description of the giant magnetoresistance effect as well as the discussion of the requirements which must be fulfilled in giant magnetoresistance thin film structures are given in the first part of our review. In the second part the magnetization reversal and giant magnetoresistance effect of antiferromagnetically coupled multilayers, spin valve and pseudo-spin valve thin film structures are explained. For these structures we also discuss the influence of the structure defects such as surface roughness and pinholes on the giant magnetoresistance effect

    Multilayer Structures with Giant Magnetoresistance

    No full text
    The phenomenological description of the giant magnetoresistance effect as well as the discussion of the requirements which must be fulfilled in giant magnetoresistance thin film structures are given in the first part of our review. In the second part the magnetization reversal and giant magnetoresistance effect of antiferromagnetically coupled multilayers, spin valve and pseudo-spin valve thin film structures are explained. For these structures we also discuss the influence of the structure defects such as surface roughness and pinholes on the giant magnetoresistance effect
    corecore