28 research outputs found
Hole Transport in Impurity Band and Valence Bands Studied in Moderately Doped GaAs:Mn Single Crystals
We report on simple experiment on temperature-dependent Hall effect
measurements in GaMnAs single crystalline samples with Mn composition estimated
at 0.05-0.3 at.% which is slightly below the onset of ferromagnetism. Impurity
band transport is visible for Mn compositions of ~0.3 at.% as a clear metallic
behaviour. The results show interesting situation that the Metal-Insulator
transition in GaAs:Mn occurs within the impurity band which is separated from
the valence bands for Mn concentrations studied here. We also discuss on the
equilibrium high temperature solubility limit of Mn in GaAs, unknown precisely
in the literature.Comment: 9 pages, 2 figures, Proc. of 35th International School on the Physics
of Semiconducting Compounds, Jaszowiec 2007, Poland, to appear in Acta
Physica Polonica A (2007
Electronic structure of InMnAs studied by photoemission spectroscopy: Comparison with GaMnAs
We have investigated the electronic structure of the -type diluted
magnetic semiconductor InMnAs by photoemission spectroscopy. The Mn
3 partial density of states is found to be basically similar to that of
GaMnAs. However, the impurity-band like states near the top of
the valence band have not been observed by angle-resolved photoemission
spectroscopy unlike GaMnAs. This difference would explain the
difference in transport, magnetic and optical properties of
InMnAs and GaMnAs. The different electronic
structures are attributed to the weaker Mn 3 - As 4 hybridization in
InMnAs than in GaMnAs.Comment: 4 pages, 3 figure
Propagating Coherent Acoustic Phonon Wavepackets in InMnAs/GaSb
We observe pronounced oscillations in the differential reflectivity of a
ferromagnetic InMnAs/GaSb heterostructure using two-color pump-probe
spectroscopy. Although originally thought to be associated with the
ferromagnetism, our studies show that the oscillations instead result from
changes in the position and frequency-dependent dielectric function due to the
generation of coherent acoustic phonons in the ferromagnetic InMnAs layer and
their subsequent propagation into the GaSb. Our theory accurately predicts the
experimentally measured oscillation period and decay time as a function of
probe wavelength.Comment: 4 pages, 4 figure
Relation among concentrations of incorporated Mn atoms, ionized Mn acceptors, and holes in p-(Ga,Mn)As epilayers
The amount of ionized Mn acceptors in various p-type Mn-doped GaAs epilayers
has been evaluated by electrochemical capacitance-voltage measurements, and has
been compared systematically with concentrations of incorporated Mn atoms and
holes for wide range of Mn concentration (10^17 ~ 10^21 cm^-3). Quantitative
assessment of anomalous Hall effect at room temperature is also carried out for
the first time.Comment: 8 pages, 4 figures, tabl
Theory of spin-polarized bipolar transport in magnetic p-n junctions
The interplay between spin and charge transport in electrically and
magnetically inhomogeneous semiconductor systems is investigated theoretically.
In particular, the theory of spin-polarized bipolar transport in magnetic p-n
junctions is formulated, generalizing the classic Shockley model. The theory
assumes that in the depletion layer the nonequilibrium chemical potentials of
spin up and spin down carriers are constant and carrier recombination and spin
relaxation are inhibited. Under the general conditions of an applied bias and
externally injected (source) spin, the model formulates analytically carrier
and spin transport in magnetic p-n junctions at low bias. The evaluation of the
carrier and spin densities at the depletion layer establishes the necessary
boundary conditions for solving the diffusive transport equations in the bulk
regions separately, thus greatly simplifying the problem. The carrier and spin
density and current profiles in the bulk regions are calculated and the I-V
characteristics of the junction are obtained. It is demonstrated that spin
injection through the depletion layer of a magnetic p-n junction is not
possible unless nonequilibrium spin accumulates in the bulk regions--either by
external spin injection or by the application of a large bias. Implications of
the theory for majority spin injection across the depletion layer, minority
spin pumping and spin amplification, giant magnetoresistance, spin-voltaic
effect, biasing electrode spin injection, and magnetic drift in the bulk
regions are discussed in details, and illustrated using the example of a GaAs
based magnetic p-n junction.Comment: 36 pages, 11 figures, 2 table