11,500 research outputs found

    Doctors in the making: Overcoming the challenges of transition

    Get PDF
    The PhD journey is, for many students, formative training into the world of academia. It is here that scholars gain a deeper understanding of the technical as well as the social aspects of their discipline, and where they gain the knowledge required to conduct sound research (Golde, 1998; Golde and Dore, 2001; Meschitti and Carassa, 2014). This pivotal educational phase is quite distinct from other stages in higher education. One of the main challenges at this level is the individualistic narrative of the PhD (McAlpine et al., 2012). Doctoral candidates often feel isolated as they navigate their new role as doctoral student and academic professional (Golde, 1998; Meschitti and Carassa, 2014). In order to promote successful socialisation, we advocate here for student-led transition support that is facilitated by the Higher Education Institution (HEI). Such an initiative should function not as formal induction, but as a peer-learning social space that fosters the development of Communities of Practice (Wenger, 1999, 2010)

    Assessment of the feasibility of an ultra-low power, wireless digital patch for the continuous ambulatory monitoring of vital signs.

    Get PDF
    BACKGROUND AND OBJECTIVES: Vital signs are usually recorded at 4–8 h intervals in hospital patients, and deterioration between measurements can have serious consequences. The primary study objective was to assess agreement between a new ultra-low power, wireless and wearable surveillance system for continuous ambulatory monitoring of vital signs and a widely used clinical vital signs monitor. The secondary objective was to examine the system's ability to automatically identify and reject invalid physiological data. SETTING: Single hospital centre. PARTICIPANTS: Heart and respiratory rate were recorded over 2 h in 20 patients undergoing elective surgery and a second group of 41 patients with comorbid conditions, in the general ward. OUTCOME MEASURES: Primary outcome measures were limits of agreement and bias. The secondary outcome measure was proportion of data rejected. RESULTS: The digital patch provided reliable heart rate values in the majority of patients (about 80%) with normal sinus rhythm, and in the presence of abnormal ECG recordings (excluding aperiodic arrhythmias such as atrial fibrillation). The mean difference between systems was less than ±1 bpm in all patient groups studied. Although respiratory data were more frequently rejected as invalid because of the high sensitivity of impedance pneumography to motion artefacts, valid rates were reported for 50% of recordings with a mean difference of less than ±1 brpm compared with the bedside monitor. Correlation between systems was statistically significant (p<0.0001) for heart and respiratory rate, apart from respiratory rate in patients with atrial fibrillation (p=0.02). CONCLUSIONS: Overall agreement between digital patch and clinical monitor was satisfactory, as was the efficacy of the system for automatic rejection of invalid data. Wireless monitoring technologies, such as the one tested, may offer clinical value when implemented as part of wider hospital systems that integrate and support existing clinical protocols and workflows

    Rural-urban migration in d-dimensional lattices

    Full text link
    The rural-urban migration phenomenon is analyzed by using an agent-based computational model. Agents are placed on lattices which dimensions varying from d=2 up to d=7. The localization of the agents in the lattice define their social neighborhood (rural or urban) not being related to their spatial distribution. The effect of the dimension of lattice is studied by analyzing the variation of the main parameters that characterizes the migratory process. The dynamics displays strong effects even for around one million of sites, in higher dimensions (d=6, 7).Comment: 9 pages, 7 figures, to be published in International Journal of Modern Physics C 1

    Constriction size distributions of granular filters: a numerical study

    Get PDF
    The retention capability of granular filters is controlled by the narrow constrictions connecting the voids within the filter. The theoretical justification for empirical filter rules used in practice includes consideration of an idealised soil fabric in which constrictions form between co-planar combinations of spherical filter particles. This idealised fabric has not been confirmed by experimental or numerical observations of real constrictions. This paper reports the results of direct, particle-scale measurement of the constriction size distribution (CSD) within virtual samples of granular filters created using the discrete-element method (DEM). A previously proposed analytical method that predicts the full CSD using inscribed circles to estimate constriction sizes is found to poorly predict the CSD for widely graded filters due to an over-idealisation of the soil fabric. The DEM data generated are used to explore quantitatively the influence of the coefficient of uniformity, particle size distribution and relative density of the filter on the CSD. For a given relative density CSDs form a narrow band of similarly shaped curves when normalised by characteristic filter diameters. This lends support to the practical use of characteristic diameters to assess filter retention capability
    corecore