159 research outputs found

    Proposal for measuring the quantum states of neutrons in the gravitational field with a CCD-based pixel sensor

    Full text link
    An experimental setup is proposed for the precise measurement of the quantum states of ultracold neutrons bound in the earth's gravitational field. The experiment utilizes a CCD-based pixel sensor and magnification system to observe the fine structure of the neutron distribution. In this work, we analyzed the sensor's deposited energy measurement capability and found that its spatial resolution was 5.3 um. A magnifying power of two orders of magnitude was realized by using a cylindrical rod as a convex mirror.Comment: Accepted for publication in NIMA; 13 pages, 8 figure

    Thomson Scattering of Coherent Diffraction Radiation by an Electron Bunch

    Get PDF
    The paper considers the process of Thomson scattering of coherent diffraction radiation (CDR) produced by the preceding bunch of the accelerator on one of the following bunches. It is shown that the yield of scattered hard photons is proportional to Ne3_e^3, where Ne_e is the number of electrons per bunch. A geometry is chosen for the CDR generation and an expression is obtained for the scattered photon spectrum with regard to the geometry used, that depends in an explicit form on the bunch size. A technique is proposed for measuring the bunch length using scattered radiation characteristics.Comment: 14 pages, LATEX, 6 ps.gz figures, submitted to Phys.Rev.

    Empirical comparison of high gradient achievement for different metals in DC and pulsed mode

    Full text link
    For the SwissFEL project, an advanced high gradient low emittance gun is under development. Reliable operation with an electric field, preferably above 125 MV/m at a 4 mm gap, in the presence of an UV laser beam, has to be achieved in a diode configuration in order to minimize the emittance dilution due to space charge effects. In the first phase, a DC breakdown test stand was used to test different metals with different preparation methods at voltages up to 100 kV. In addition high gradient stability tests were also carried out over several days in order to prove reliable spark-free operation with a minimum dark current. In the second phase, electrodes with selected materials were installed in the 250 ns FWHM, 500 kV electron gun and tested for high gradient breakdown and for quantum efficiency using an ultra-violet laser.Comment: 25 pages, 13 figures, 5 tables. Follow up from FEL 2008 conference (Geyongju Korea 2008) New Title in JVST A (2010) : Vacuum breakdown limit and quantum efficiency obtained for various technical metals using DC and pulsed voltage source

    Stimulated coherent spontaneous emission in an FEL with `quiet' bunches

    Full text link
    For a planar FEL configuration we study stimulated coherent spontaneous emission driven by a gradient of the bunch current in the presence of different levels of noise in bunches. To perform a vast amount of simulations required for obtaining statistically valid results, we developed a memory and time efficient one-dimensional simulation code based on the integral solution to a Klein-Gordon equation describing the field evolution. The longitudinal granularity of the electron bunch density originating from shot noise is maintained throughout the analysis. Three-dimensional effects like transverse emittance and diffraction are taken into account in simulations via an effective FEL parameter calculated from Xie's fitting formula. Calculations are performed for an FEL model with the SwissFEL injector bunch parameters. It turns out that a reduction of noise by several orders of magnitude below the level of shot noise is required to mitigate the noise effect. We propose a novel scheme that allows for formation of electron bunches with a reduced level of noise and a high gradient of the current at the bunch tail to enhance coherent spontaneous emission. The presented scheme uses effects of noise reduction and controlled microbunching instability and consists of a laser heater, a shot noise suppression section as well as a bunch compressor. The noise factor and microbunching gain with and without laser heater are estimated. We found that shot noise reduction by three orders of magnitude can be achieved for a finite transverse size electron bunch

    Determination of the mean inner potential of cadmium telluride via electron holography

    Get PDF
    Mean inner potential is a fundamental material parameter in solid state physics and electron microscopy and has been experimentally measured in CdTe, a technologically important semiconductor. As a first step, the inelastic mean free path for electron scattering in CdTe was determined, using electron energy loss spectroscopy, to enable precise thickness mapping of thin CdTe lamellae. The obtained value was λi(CdTe, 300 kV) = 192 ± 10 nm. This value is relatively large, given the high density of the material, and is discussed in the text. Next, electron diffraction and specimen tilting were employed to identify weakly diffracting lattice orientations, to enable the straightforward measurement of the electron phase shift. Finally, electron holography was utilized to quantitatively map the phase shift experienced by electron waves passing through a CdTe crystal, with several different propagation vectors. Utilization of both thickness and phase data allowed computation of mean inner potential as V0 (CdTe) = 14.0 ± 0.9 V, within the range of previous theoretical estimates
    • …
    corecore