80 research outputs found

    Evolution of Microstructure and Texture during Warm Rolling Of a Duplex Steel

    Get PDF
    The effect of warm rolling on the evolution of microstructure and texture in a duplex stainless steel (DSS) was investigated. For this purpose, a DSS steel was warm rolled up to 90 pct reduction in thickness at 498 K, 698 K, and 898 K (225 °C, 425 °C, and 625 °C). The microstructure with an alternate arrangement of deformed ferrite and austenite bands was observed after warm rolling; however, the microstructure after 90 pct warm rolling at 498 K and 898 K (225 °C and 625 °C) was more lamellar and uniform as compared to the rather fragmented and inhomogeneous structure observed after 90 pct warm rolling at 698 K (425 °C). The texture of ferrite in warm-rolled DSS was characterized by the presence of the RD (〈011〉//RD) and ND (〈111〉//ND) fibers. However, the texture of ferrite in DSS warm rolled at 698 K (425 °C) was distinctly different having much higher fraction of the RD-fiber components than that of the ND-fiber components. The texture and microstructural differences in ferrite in DSS warm rolled at different temperatures could be explained by the interaction of carbon atoms with dislocations. In contrast, the austenite in DSS warm rolled at different temperatures consistently showed pure metal- or copper-type deformation texture which was attributed to the increase in stacking fault energy at the warm-rolling temperatures. It was concluded that the evolution of microstructure and texture of the two constituent phases in DSS was greatly affected by the temperature of warm rolling, but not significantly by the presence of the other phas

    Precipitation Behavior of V and/or Cu Bearing Middle Carbon Steels

    No full text

    Molybdenum alloying in high-performance flat-rolled steel grades

    No full text
    Considerable progress in developing flat-rolled steel grades has been made by the Chinese steel industry over the recent two decades. The increasing demand for high-performance products to be used in infrastructural projects as well as in production of consumer and capital goods has been driving this development until today. The installation of state-of-the-art steel making and rolling facilities has provided the possibility of processing the most advanced steel grades. The production of high-performance steel grades relies on specific alloying elements of which molybdenum is one of the most powerful. China is nearly self-sufficient in molybdenum supplies. This paper highlights the potential and advantages of molybdenum alloying over the entire range of flat-rolled steel products. Specific aspects of steel property improvement with respect to particular applications are indicated
    corecore