29 research outputs found

    The Contribution of High-Energy X-Rays and Neutrons to Characterization and Development of Intermetallic Titanium Aluminides

    No full text
    Abstract Intermetallic γ-TiAl based alloys are a novel class of lightweight structural materials that exhibit excellent high-temperature strength while having low density. These properties make them ideal candidates for replacing dense Ni base alloys currently used in the temperature range from 550 to 750 °C. Therefore, extensive research activities were conducted during the last 20 years to make this innovative class of materials fit for service. In this task, diffraction methods have been an important tool for promoting the development of TiAl alloys. The ability to perform experiments in situ and to determine phase fractions even in cases where two phases are present in ultrafine lamellar structures are only two examples for applications in which diffraction methods are indispensable. In this work, a review is given concerning the use of diffraction methods in the development of TiAl alloys. Different methods are introduced and highlighted by examples. This review lists the advantages of diffraction experiments and critically discusses the limits of the individual methods.© 2011, Wiley-Blackwell. The definitive version is available at www3.interscience.wiley.co

    Physical metallurgy and properties of β-solidifying TiAl based alloys

    No full text

    Deformation mechanisms in micron-sized PST TiAl compression samples: Experiment and model

    No full text
    Titanium aluminides are the most promising intermetallics for use in aerospace and automotive applications. Consequently, it is of fundamental interest to explore the deformation mechanisms occurring in this class of materials. One model material which is extensively used for such studies are polysynthetically twinned (PST) TiAl crystals, which consist predominantly of parallel γ-TiAl and, fewer, α2-Ti3Al lamellae. In the present study, PST TiAl crystals with a nominal composition of Ti–50 at.% Al were machined by means of the focused ion beam (FIB) technique into miniaturized compression samples with a square cross-section of approximately 9 µm x 9 µm. Compression tests on the miniaturized samples were performed in situ inside a scanning electron microscope using a microindenter equipped with a diamond flat punch. After deformation, thin foils were cut from the micro-compression samples and thinned to electron transparency using a FIB machine in order to study the deformation structure by transmission electron microscopy (TEM). The TEM studies reveal mechanical twinning as the main deformation mechanism at strains of 5.4%, while at strains of 8.3% dislocation glide becomes increasingly important. The experimentally observed twins scale in size with the width of the γ-TiAl lamella. A kinematic and thermodynamic model is developed to describe the twin-related length change of the micro-compression sample at small strains as well as the relationship of an increase of twin width with increasing γ-TiAl lamella thickness. The developed twin model predicts a width of the twins in the range of a few nanometers, which is in agreement with experimental findings

    Phase fractions, transition and ordering temperatures in TiAl-Nb-Mo alloys: an in- and ex-situ study.

    No full text
    Intermetallic γ-TiAl based alloys of the TNM™ alloy family attain their excellent processing characteristics by a high β-phase content present at hot-working temperatures. Subsequent to hot-working the β-phase content is decreased by a heat treatment step performed at temperatures where the β-phase fraction exhibits a minimum. In this study, in- and ex-situ experiments were conducted on three alloys with different contents of β/β0 stabilizing elements. The course of phase fractions as a function of temperature as well as phase transition temperatures were determined by means of in-situ high-energy X-ray diffraction experiments. Additionally, dynamic scanning calorimetry investigations were performed to obtain complementary data on the transition temperatures. Quantitative metallography was conducted on heat treated and quenched specimens to acquire additional information on the dependence of the phase fractions on temperature. By neutron diffraction experiments the ordering temperatures of the constituent phases were determined. It was shown that the experiments yielded consistent results which differ significantly from ThermoCalc simulations for which a commercial TiAl database was used. The differences between the experimental results and the thermodynamic predictions are discussed. © 2010, Elsevier Ltd

    In situ characterization of a Nb and Mo containing γ-TiAl based alloy using neutron diffraction and high-temperature microscopy.

    No full text
    In recent times, novel titanium aluminides containing the bcc β-phase at high temperatures are being developed for improved hot-working capabilities, however, predictions of the phase diagrams are merely uncertain. Here we present in-situ neutron studies, which are particularly sensitive to the atomic disorder in the ordered phases. Complementary laser scanning confocal microscopy is employed for in-situ microstructural investigations. © 2009, Wiley-VCH Verlag Berli

    Dynamic Recovery and Recrystallization During Hot-Working in an Advanced TiAl Alloy

    No full text
    Intermetallic TiAl alloys are light-weight high-temperature materials and intended to partly replace Ni based alloys in jet engines. Due to difficult forming operations, component prices are high and limit the possible field of application. During hot-working, recovery and recrystallization effects determine the microstructural evolution and thereby the mechanical properties of the finished part as well as its behavior during deformation. To study the occurring experiments with high-energy X-rays were conducted. By means of this method, the dominating processes were identified. The results were validated through electron back scatter diffraction experiments. © 2011 CARL HANSER VERLA
    corecore