284 research outputs found

    An Experimental Study on the Ordered Alloy Ni_2Cr

    Get PDF
    The ordered alloy Ni_2Cr has been investigated by means of electron diffraction, electron microscopy, calorimetry, resistometry and tensile tests. The formation of the Pt_2Mo type superstructure is revealed by an electron diffraction study on the single crystalline specimens. The size of ordered domains is of the order of magnitude of several hundred A even in the well annealed state. The so-called \u27K-state\u27 which is characterized by the initial increase in electrical resistivity upon isothermal annealing is attributed to the existence of very fine ordered domains. Superdislocations consisting of triple dislocations are sometimes observed in various stages of ordering, and the mechanical properties are briefly discussed in the light of electron microscopic observation. The energy and entropy of transformation are evaluated as about 1.0 kcal/g・atom and 1.2 cal/g・atom-deg on the alloy of 32.1 at% Cr annealed at 500℃ for about 3000 hr

    A role for core planar polarity proteins in cell contact-mediated orientation of planar cell division across the mammalian embryonic skin

    Get PDF
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Β© The Author(s) 2017. Supplementary information accompanies this paper at doi:10.1038/s41598-017-01971-2.The question of how cell division orientation is determined is fundamentally important for understanding tissue and organ shape in both healthy or disease conditions. Here we provide evidence for cell contact-dependent orientation of planar cell division in the mammalian embryonic skin. We propose a model where the core planar polarity proteins Celsr1 and Frizzled-6 (Fz6) communicate the long axis orientation of interphase basal cells to neighbouring basal mitoses so that they align their horizontal division plane along the same axis. The underlying mechanism requires a direct, cell surface, planar polarised cue, which we posit depends upon variant post-translational forms of Celsr1 protein coupled to Fz6. Our hypothesis has parallels with contact-mediated division orientation in early C. elegans embryos suggesting functional conservation between the adhesion-GPCRs Celsr1 and Latrophilin-1. We propose that linking planar cell division plane with interphase neighbour long axis geometry reinforces axial bias in skin spreading around the mouse embryo body.Peer reviewe

    Order and Stochastic Dynamics in Drosophila Planar Cell Polarity

    Get PDF
    Cells in the wing blade of Drosophila melanogaster exhibit an in-plane polarization causing distal orientation of hairs. Establishment of the Planar Cell Polarity (PCP) involves intercellular interactions as well as a global orienting signal. Many of the genetic and molecular components underlying this process have been experimentally identified and a recently advanced system-level model has suggested that the observed mutant phenotypes can be understood in terms of intercellular interactions involving asymmetric localization of membrane bound proteins. Among key open questions in understanding the emergence of ordered polarization is the effect of stochasticity and the role of the global orienting signal. These issues relate closely to our understanding of ferromagnetism in physical systems. Here we pursue this analogy to understand the emergence of PCP order. To this end we develop a semi-phenomenological representation of the underlying molecular processes and define a β€œphase diagram” of the model which provides a global view of the dependence of the phenotype on parameters. We show that the dynamics of PCP has two regimes: rapid growth in the amplitude of local polarization followed by a slower process of alignment which progresses from small to large scales. We discuss the response of the tissue to various types of orienting signals and show that global PCP order can be achieved with a weak orienting signal provided that it acts during the early phase of the process. Finally we define and discuss some of the experimental predictions of the model

    Wdpcp, a PCP Protein Required for Ciliogenesis, Regulates Directional Cell Migration and Cell Polarity by Direct Modulation of the Actin Cytoskeleton

    Get PDF
    Planar cell polarity (PCP) regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model. Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet-Biedl/Meckel-Gruber ciliopathy syndromes, including cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments, but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2 recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for ciliogenesis can directly modulate the actin cytoskeleton to regulate cell polarity and directional cell migration

    Emerging evidence of a link between the polycystins and the mTOR pathways

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disease characterized by the formation of renal cysts. This disease can be caused by mutations in two genes, PKD1 and PKD2, which encode polycystin-1 (PC-1) and -2 (PC-2), respectively

    Serrano (Sano) Functions with the Planar Cell Polarity Genes to Control Tracheal Tube Length

    Get PDF
    Epithelial tubes are the functional units of many organs, and proper tube geometry is crucial for organ function. Here, we characterize serrano (sano), a novel cytoplasmic protein that is apically enriched in several tube-forming epithelia in Drosophila, including the tracheal system. Loss of sano results in elongated tracheae, whereas Sano overexpression causes shortened tracheae with reduced apical boundaries. Sano overexpression during larval and pupal stages causes planar cell polarity (PCP) defects in several adult tissues. In Sano-overexpressing pupal wing cells, core PCP proteins are mislocalized and prehairs are misoriented; sano loss or overexpression in the eye disrupts ommatidial polarity and rotation. Importantly, Sano binds the PCP regulator Dishevelled (Dsh), and loss or ectopic expression of many known PCP proteins in the trachea gives rise to similar defects observed with loss or gain of sano, revealing a previously unrecognized role for PCP pathway components in tube size control

    Primary Cilia Are Not Required for Normal Canonical Wnt Signaling in the Mouse Embryo

    Get PDF
    Sonic hedgehog (Shh) signaling in the mouse requires the microtubule-based organelle, the primary cilium. The primary cilium is assembled and maintained through the process of intraflagellar transport (IFT) and the response to Shh is blocked in mouse mutants that lack proteins required for IFT. Although the phenotypes of mouse IFT mutants do not overlap with phenotypes of known Wnt pathway mutants, recent studies report data suggesting that the primary cilium modulates responses to Wnt signals.We therefore carried out a systematic analysis of canonical Wnt signaling in mutant embryos and cells that lack primary cilia because of loss of the anterograde IFT kinesin-II motor (Kif3a) or IFT complex B proteins (Ift172 or Ift88). We also analyzed mutant embryos with abnormal primary cilia due to defects in retrograde IFT (Dync2h1). The mouse IFT mutants express the canonical Wnt target Axin2 and activate a transgenic canonical Wnt reporter, BAT-gal, in the normal spatial pattern and to the same quantitative level as wild type littermates. Similarly, mouse embryonic fibroblasts (MEFs) derived from IFT mutants respond normally to added Wnt3a. The switch from canonical to non-canonical Wnt also appears normal in IFT mutant MEFs, as both wild-type and mutant cells do not activate the canonical Wnt reporter in the presence of both Wnt3a and Wnt5a.We conclude that loss of primary cilia or defects in retrograde IFT do not affect the response of the midgestation embryo or embryo-derived fibroblasts to Wnt ligands
    • …
    corecore