619 research outputs found

    Wave Packets in Discrete Quantum Phase Space

    Full text link
    The properties of quantum mechanics with a discrete phase space are studied. The minimum uncertainty states are found, and these states become the Gaussian wave packets in the continuum limit. With a suitably chosen Hamiltonian that gives free particle motion in the continuum limit, it is found that full or approximate periodic time evolution can result. This represents an example of revivals of wave packets that in the continuum limit is the familiar free particle motion on a line. Finally we examine the uncertainty principle for discrete phase space and obtain the correction terms to the continuum case.Comment: 19 pages, 6 figure

    Kostant partition functions for affine Kac-Moody algebras

    Get PDF
    Employing the method of generating functions in conjunction with various number-thoretic identities, we obtain recursion relations for the Kostant partition functions for the affine Kac-Moody algebras The partition functions for the higher rank algebras are expressed in terms of SUˆ(2) partition functions. We derive certain number-theoretic identities using the equivalence of our result with the expressions derived by Kac and Peterson

    Finite-Dimensional Calculus

    Get PDF
    We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin, and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement in finite terms Rota's "finite operator calculus".Comment: 26 pages. Added material on Krawtchouk polynomials. Additional references include

    Quantum information distributors: Quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit

    Get PDF
    We show that for any Hilbert-space dimension, the optimal universal quantum cloner can be constructed from essentially the same quantum circuit, i.e., we find a universal design for universal cloners. In the case of infinite dimensions (which includes continuous variable quantum systems) the universal cloner reduces to an essentially classical device. More generally, we construct a universal quantum circuit for distributing qudits in any dimension which acts covariantly under generalized displacements and momentum kicks. The behavior of this covariant distributor is controlled by its initial state. We show that suitable choices for this initial state yield both universal cloners and optimized cloners for limited alphabets of states whose states are related by generalized phase-space displacements.Comment: 10 revtex pages, no figure

    Origin of unitary symmetry and charge conservation in strong interactions

    Get PDF
    We discuss the relation of the existence of multiplets of (strongly) interacting particles and the possible unitary symmetry of their interactions. We present here a dynamical principle which concerns the one-particle propagators (two-point functions) but yielding the existence of a (unitary) symmetry group for their trilinear interactions. We derive, as a by-product, electric charge (and hypercharge) conservation in the interaction of these particles

    Statistics of Atmospheric Correlations

    Get PDF
    For a large class of quantum systems the statistical properties of their spectrum show remarkable agreement with random matrix predictions. Recent advances show that the scope of random matrix theory is much wider. In this work, we show that the random matrix approach can be beneficially applied to a completely different classical domain, namely, to the empirical correlation matrices obtained from the analysis of the basic atmospheric parameters that characterise the state of atmosphere. We show that the spectrum of atmospheric correlation matrices satisfy the random matrix prescription. In particular, the eigenmodes of the atmospheric empirical correlation matrices that have physical significance are marked by deviations from the eigenvector distribution.Comment: 8 pages, 9 figs, revtex; To appear in Phys. Rev.

    Entangling power of quantized chaotic systems

    Full text link
    We study the quantum entanglement caused by unitary operators that have classical limits that can range from the near integrable to the completely chaotic. Entanglement in the eigenstates and time-evolving arbitrary states is studied through the von Neumann entropy of the reduced density matrices. We demonstrate that classical chaos can lead to substantially enhanced entanglement. Conversely, entanglement provides a novel and useful characterization of quantum states in higher dimensional chaotic or complex systems. Information about eigenfunction localization is stored in a graded manner in the Schmidt vectors, and the principal Schmidt vectors can be scarred by the projections of classical periodic orbits onto subspaces. The eigenvalues of the reduced density matrices are sensitive to the degree of wavefunction localization, and are roughly exponentially arranged. We also point out the analogy with decoherence, as reduced density matrices corresponding to subsystems of fully chaotic systems are diagonally dominant.Comment: 21 pages including 9 figs. (revtex
    corecore