31 research outputs found

    New genetic tools for plant defense against parasitic nematodes

    Get PDF
    Nematodes belong to economically important pests. Here we reviewed the recent data on molecular mechanisms of plant resistance to cyst and gall nematodes including the most devastating Globodera rostochiensis, G. pallida, Heterodera schachtii, Meloidogyne chitwoodi, and M. incognita. The Golden Potato Cyst Nematode (G.Ā rostochiensis, GPCN) may be taken as an example of an economically important pest: in Russia, it occurs in 61 regions with a total area of 1.8 million ha and may cause the yield loss from 19 to 90 %. The biological characteristics of sedentary nematodes makes their agrotechnical control problematic, i.e. the GPCN cysts remain dormant in soil for many years until a susceptible host appears, whereas nematicides are either toxic or inefficient. Introgression of resistance genes (R-genes) from related cultivated or wild species is likely to be the most appropriate way for their biocontrol. The life cycle of sedentary nematodes is based on juvenilesā€™ penetration into the host root where they reprogram plant cells into a syncytium or the so-called ā€˜giant cellsā€™ and inhibit the plant defense response. Molecular mechanisms of plant-nematode interaction are unusual and this phenomenon provides a very interesting model for the investigation of plant morphogenesis control as well as for the development of new genetic instruments of biocontrol. Here we reviewed recent publications on plant parasitic nematode effectors used for hijacking of the plant immune system, data on R-genes and molecular mechanisms of their activities. In addition, host-induced gene silencing (HIGS) is discussed as a perspective mechanism for nematode biocontrol. HIGS is based on the RNA interference in the cells of the host plant addressed against the nematode genes important for their development and productivity. Several recent investigations demonstrated efficiency of HIGS against sedentary nematodes

    Quarantine nematode species and pathotypes potentially dangerous for domestic potato production: populations diversity and the genetics of potato resistance

    Get PDF
    The review considers quarantine species and nematode pathotypes potentially dangerous for domestic potato production. Potatoes are affected by more than 30 types of parasitic nematodes, but the review focuses on the most harmful representatives of genera that cause great damage to potato production: Globodera, Ditylenchus, Nacob bus and Meloidogyne. Phytopathological and molecular methods of identification of species and pathotypes and the main achievements in studying the population variability of parasitic potato nematodes were analyzed. It was shown that due to the peculiarities of the life cycle of nematodes and lability of their genomes, the genetic variability of these organisms is very high, which creates a threat of forming new pathogenic genotypes of the parasites. The information about the intra- and interpopulation variability of nematodes is important for studying the ways of introduction and distribution of separate species, as well as for searching for the correlations of molecular markers with the pathotype. Phylogenetic studies based on modern data on genetic variability of populations have allowed to reveal species complexes in Globodera pallida (Stone) Behrens and Nacobbus aberrans (Thorne) Thorne & Allen (sensu lato), including cryptic species. The main components of successful protection preventing a wide distribution of parasitic nematodes are quarantine measures, agricultural techniques, biological methods of protection and cultivation of resistant cultivars. Special attention in the review is paid to the breeding of potato cultivars with durable resistance to various nematode pathotypes, because the cultivation of such varieties is the most ecologically safe and economically advantageous way to prevent epiphytoties. Currently, significant progress has been made in the genetic protection of potato cultivars, especially against cyst-forming nematodes. The review provides data on sources of potato resistance to parasitic nematodes identified in collections of wild and cultivated species. Data on identified R-gens and QTL of resistance that have been introduced into breeding varieties using different methods and approaches are analyzed. The literature data on the study of structural and functional organization of genes for resistance to potato cyst nematodes are given. The results of molecular research on revealing the polymorphisms of loci involved in the control of resistance to cyst and gall nematodes, the development of molecular markers of certain genes and their use in marker-assisted selection for developing of new resistant cultivars, including those with group resistance, are considered

    Resistance to causal agents of late blight and golden potato nematode of the modern cultivars of seed potatoes and their phytosanitary status in various agroclimatic zones of the European part of Russia

    Get PDF
    The active expansion of foreign potato cultivars on the territory of the Russian Federation has led to a change in the dominant pathogen species and to the emergence of new pathotypes of causal agents of harmful potato diseases. The aim of the study was to evaluate resistance to Phytophthora infestans and Globodera rostochiensis of modern potato cultivars and determine the distribution of fungal and oomycetic diseases on potato cultivars in variousĀ agroclimatic zones of Russia. The resistance of 41 foreign cultivars was evaluated to pathotype Ro1 G. rostochiensis and to isolate VZR17 P. infestans with virulence genes 1.2.3.4.5.6.7.8.9.10.11. Resistant to G. rostochiensis were 38 cultivars. 57R marker of the H1 gene conferring resistance to the Ro1 pathotype of G. rostochiensis was detected in 96.6 % of the nematode resistant cultivars studied; susceptible varieties did not possess this marker. Absolute resistance to the causative agent of late blight was demonstrated by the cultivars Alouette and Sarpo Mira (score 9); high levels of resistance (score 6 and 7) were determined for the cultivars Evolution, Red Fantasy and Ricarda. The cultivars Baltic Rose, Damaris, Desiree, Gala, Labella, Laperla, Mia, Sanibel, Zekura, Queen Anne, Red Lady and ā€˜7 for 7ā€™ were classified as susceptible, although the characteristics of originators indicated average resistance to late blight. A phytopathological test was conducted on 92 samples of 39 varieties of seed potatoes from four federal districts of the Russian Federation: Volga, NorthWest, Central and North Caucasus. Rhizoctonia solani, Fusarium spp. and Helminthosporium solani are most common on all varieties. 100 % defeat of tubers by H. solani was recorded in various regions on the cultivars Red Scarlett, Evolution, Labella, Colombo, Gala and Nevsky. Widespread Colletotrichum coccodes on tubers of the elite and 2nd reproductions of the potato cultivar Red Scarlett (50.0ā€“71.4 %) was recorded in the Central District

    Potato resistance to quarantine diseases

    Get PDF
    The casual agent of potato wart Synchytrium endobioticum (Schilb.) Perc. and potato golden nematode (PGN) Globodera rostochiensis (Wollenweber) Behrens are the quarantine species causing the most widespread and destructive diseases of potato in the Russian Federation and other countries of the world. The potato pale nematode Globodera pallida (Stone) Behrens is not found in Russia, although in the European Union it is found everywhere. The review provides information on the harmfulness of S. endobioticum and PGN. To date, 43 pathotypes of S. endobioticum and 5 pathotypes of PGN have been revealed in the world. In the Russian Federation, only the first (D1) pathotype of potato wart and pathotype Ro1 of PGN have been found. Modern sets of differentials for S. endobioticum and PGN and methods of pathotype composition determination, including efforts to develop molecular markers (SSR) to determine the race of S. endobioticum, are presented. Data on the resistance of commercial potato cultivars to these quarantine diseases and methods for resistance determination are reviewed. Modern data on the genetics of potato resistance to S. endobioticum, G. rostochiensis and G. pallida, including mapping and cloning of R-genes, are presented. Available literature data on molecular markers of R-genes for marker assisted selection and the evaluation of their effectiveness are presented. The use of multiplex systems allows the presence of several genes for resistance to one or more pathogens to be analyzed at once. Mechanisms of potato quantitative resistance to S. endobioticum and PGN and adaptation processes in pathogens populations resulting in overcoming resistance of host are discussed. Cultivation of cultivars poorly susceptible to PGN can stimulate the adaptive variability of the pathogen and induce virulent pathotypes for 2ā€“3 pathogen generations

    Unlocking new alleles for leaf rust resistance in the Vavilov wheat collection

    No full text
    Thirteen potentially new leaf rust resistance loci were identified in a Vavilov wheat diversity panel. We demonstrated the potential of allele stacking to strengthen resistance against this important pathogen
    corecore