2,692 research outputs found

    Effect of early supervised progressive resistance training compared to unsupervised home-based exercise after fast-track total hip replacement applied to patients with preoperative functional limitations. A single-blinded randomised controlled trial

    Get PDF
    SummaryObjectiveTo examine if 2 weekly sessions of supervised progressive resistance training (PRT) in combination with 5 weekly sessions of unsupervised home-based exercise is more effective than 7 weekly sessions of unsupervised home-based exercise in improving leg-extension power of the operated leg 10 weeks after total hip replacement (THR) in patients with lower pre-operative function.MethodA total of 73 patients scheduled for THR were randomised (1:1) to intervention group (IG, home based exercise 5 days/week and PRT 2 days/week) or control group (CG, home based exercise 7 days/week). The primary endpoint was change in leg extension power at 10 week follow up. Secondary outcomes were isometric hip muscle strength, sit-to-stand test, stair climb test, 20 m walking speed and patient-reported outcome (HOOS).ResultsSixty-two completed the trial (85%). Leg extension power increased from baseline to the 10 week follow up in both groups; mean [95% CI] IG: 0.29 [0.13; 0.45] and CG: 0.26 [0.10; 0.42] W/kg, with no between-group difference (primary outcome) (P = 0.79). Maximal walking speed (P = 0.008) and stair climb performance (P = 0.04) improved more in the IG compared to CG, no other between-group differences existed.ConclusionsIn this trial, supervised PRT twice a week in addition to 5 weekly sessions of unsupervised exercise for 10 weeks was not superior to 7 weekly sessions of unsupervised home-based exercise for 10 weeks in improving the primary outcome, leg-extension power of the operated leg, at the primary endpoint 10 weeks after surgery in THR patients with lower pre-operative function.Trial registration: NCT01214954

    Mutations in the intersubunit bridge regions of 16S rRNA affect decoding and subunit–subunit interactions on the 70S ribosome

    Get PDF
    The small and large subunits of the ribosome are held together by a series of bridges, involving RNA–RNA, RNA–protein and protein–protein interactions. Some 12 bridges have been described for the Escherichia coli 70S ribosome. In this work, we have targeted for mutagenesis, some of the 16S rRNA residues involved in the formation of intersubunit bridges B3, B5, B6, B7b and B8. In addition to effects on subunit association, the mutant ribosomes also affect the fidelity of translation; bridges B5, B6 and B8 increase decoding errors during elongation, while disruption of bridges B3 and B7b alters the stringency of start codon selection. Moreover, mutations in the bridge B5, B6 and B8 regions of 16S rRNA also correct the growth and decoding defects associated with alterations in ribosomal protein S12. These results link bridges B5, B6 and B8 with the decoding process and are consistent with the recently described location of translation factor EF-Tu on the ribosome and the proposed involvement of h14 in activating Guanosine-5′-triphosphate (GTP) hydrolysis by aminoacyl-tRNA•EF-Tu•GTP. These observations are consistent with a model in which bridges B5, B6 and B8 contribute to the fidelity of translation by modulating GTP hydrolysis by aminoacyl-tRNA•EF-Tu•GTP ternary complexes during the elongation phase of protein synthesis
    corecore