890 research outputs found

    CAgNVAS I. A new generation DIFMAP for Modelfitting Interferometric Data and Estimating Variances, Biases and Correlations

    Full text link
    We present the program `Catalogue of proper motions in extragalactic jets from Active galactic Nuclei with Very large Array Studies' or CAgNVAS, with the objective of using archival and new VLA observations to measure proper motions of jet components beyond hundred parsecs. This objective requires extremely high accuracy in component localization. Interferometric datasets are noisy and often lack optimal coverage of the visibility plane, making interpretation of subtleties in deconvolved imaging inaccurate. Fitting models to complex visibilities, rather than working in the imaging plane, is generally preferred as a solution when one needs the most accurate description of the true source structure. In this paper, we present a new generation version of DIFMAP\texttt{DIFMAP} (\texttt{ngDIFMAP}) to model and fit interferometric closure quantities developed for the CAgNVAS program. \texttt{ngDIFMAP} uses a global optimization algorithm based on simulated annealing, which results in more accurate parameter estimation especially when the number of parameters is high. Using this package we demonstrate the ramifications of amplitude and phase errors, as well as loss of u−vu-v coverage, on parameters estimated from visibility data. The package can be used to accurately predict variance, bias, and correlations between parameters. Our results demonstrate the limits on information recovery from noisy interferometric data, with a particular focus on the accurate reporting of errors on measured quantities.Comment: 26 pages, 23 figure

    Phase transition and scaling behavior of topological charged black holes in Horava-Lifshitz gravity

    Full text link
    Gravity can be thought as an emergent phenomenon and it has a nice "thermodynamic" structure. In this context, it is then possible to study the thermodynamics without knowing the details of the underlying microscopic degrees of freedom. Here, based on the ordinary thermodynamics, we investigate the phase transition of the static, spherically symmetric charged black hole solution with arbitrary scalar curvature 2k2k in Ho\v{r}ava-Lifshitz gravity at the Lifshitz point z=3z=3. The analysis is done using the canonical ensemble frame work; i.e. the charge is kept fixed. We find (a) for both k=0k=0 and k=1k=1, there is no phase transition, (b) while k=−1k=-1 case exhibits the second order phase transition within the {\it physical region} of the black hole. The critical point of second order phase transition is obtained by the divergence of the heat capacity at constant charge. Near the critical point, we find the various critical exponents. It is also observed that they satisfy the usual thermodynamic scaling laws.Comment: Minor corrections, refs. added, to appear in Class. Quant. Grav. arXiv admin note: text overlap with arXiv:1111.0973 by other author

    Voros product, noncommutative inspired Reissner-Nordstr{\"o}m black hole and corrected area law

    Full text link
    We emphasize the importance of the Voros product in defining a noncommutative inspired Reissner-Nordstr\"{o}m black hole. The entropy of this black hole is then computed in the tunneling approach and is shown to obey the area law at the next to leading order in the noncommutative parameter θ\theta. Modifications to entropy/area law is then obtained by going beyond the semi-classical approximation. The leading correction to the semiclassical entropy/area law is found to be logarithmic and its coefficient involves the noncommutative parameter θ\theta.Comment: 12 pages Late

    Threshold Error Penalty for Fault Tolerant Computation with Nearest Neighbour Communication

    Full text link
    The error threshold for fault tolerant quantum computation with concatenated encoding of qubits is penalized by internal communication overhead. Many quantum computation proposals rely on nearest-neighbour communication, which requires excess gate operations. For a qubit stripe with a width of L+1 physical qubits implementing L levels of concatenation, we find that the error threshold of 2.1x10^-5 without any communication burden is reduced to 1.2x10^-7 when gate errors are the dominant source of error. This ~175X penalty in error threshold translates to an ~13X penalty in the amplitude and timing of gate operation control pulses.Comment: minor correctio

    A Statistical Mechanical Load Balancer for the Web

    Full text link
    The maximum entropy principle from statistical mechanics states that a closed system attains an equilibrium distribution that maximizes its entropy. We first show that for graphs with fixed number of edges one can define a stochastic edge dynamic that can serve as an effective thermalization scheme, and hence, the underlying graphs are expected to attain their maximum-entropy states, which turn out to be Erdos-Renyi (ER) random graphs. We next show that (i) a rate-equation based analysis of node degree distribution does indeed confirm the maximum-entropy principle, and (ii) the edge dynamic can be effectively implemented using short random walks on the underlying graphs, leading to a local algorithm for the generation of ER random graphs. The resulting statistical mechanical system can be adapted to provide a distributed and local (i.e., without any centralized monitoring) mechanism for load balancing, which can have a significant impact in increasing the efficiency and utilization of both the Internet (e.g., efficient web mirroring), and large-scale computing infrastructure (e.g., cluster and grid computing).Comment: 11 Pages, 5 Postscript figures; added references, expanded on protocol discussio

    Generalized W-Class State and its Monogamy Relation

    Full text link
    We generalize the W class of states from nn qubits to nn qudits and prove that their entanglement is fully characterized by their partial entanglements even for the case of the mixture that consists of a W-class state and a product state ∣0⟩⊗n\ket{0}^{\otimes n}.Comment: 12 pages, 1 figur

    CAgNVAS II. Proper Motions in the sub-kiloparsec Jet of 3C 78: Novel Constraints on the Physical Nature of Relativistic Jets

    Full text link
    Jets from active galactic nuclei are thought to play a role in the evolution of their host and local environments, but a detailed prescription is limited by the understanding of the jets themselves. Proper motion studies of compact bright components in radio jets can be used to produce model-independent constraints on their Lorentz factor, necessary to understand the quantity of energy deposited in the inter-galactic medium. We present our initial work on the jet of radio-galaxy 3C~78, as part of CAgNVAS (Catalogue of proper motions in Active galactic Nuclei using Very Large Array Studies), with a goal of constraining nature of jet plasma on larger (>100>100 parsec) scales. In 3C~78 we find three prominent knots (A, B and C), where knot B undergoes subluminal longitudinal motion (∼0.6c\sim0.6c at ∼\sim 200 pc), while knot C undergoes extreme (apparent) backward motion and eventual forward motion (∼−2.6c\sim-2.6c, 0.5c0.5c, at ∼\sim 300 pc). Assuming knots are shocks, we infer the bulk speeds from the pattern motion of Knots B and C. We model the spectral energy distribution (SED) of the large-scale jet and observe that a physically motivated two-zone model can explain most of the observed emission. We also find that the jet profile remains approximately conical from parsec to kiloparsec scales. Using the parsec-scale speed from VLBI studies (∼0.1c\sim0.1c) and the derived bulk speeds, we find that the jet undergoes bulk acceleration between the parsec and the kiloparsec scales providing the first direct evidence of jet acceleration in a conical and matter-dominated jet.Comment: 18 pages, 14 figure

    Ehrenfest's scheme and thermodynamic geometry in Born-Infeld AdS black holes

    Full text link
    In this paper we analyze the phase transition phenomena in Born-Infeld AdS black holes using Ehrenfest's scheme of standard thermodynamics. The critical points are marked by the divergences in the heat capacity. In order to investigate the nature of the phase transition, we analytically check both the Ehrenfest's equations near the critical points. Our analysis reveals that this is indeed a second order phase transition. Finally, we analyze the nature of the phase transition using state space geometry approach. This is found to be compatible with the Ehrenfest's scheme.Comment: Published versio

    Magnetic fields and Sunyaev-Zel'dovich effect in galaxy clusters

    Full text link
    In this work we study the contribution of magnetic fields to the Sunyaev Zeldovich (SZ) effect in the intracluster medium. In particular we calculate the SZ angular power spectrum and the central temperature decrement. The effect of magnetic fields is included in the hydrostatic equilibrium equation by splitting the Lorentz force into two terms one being the force due to magnetic pressure which acts outwards and the other being magnetic tension which acts inwards. A perturbative approach is adopted to solve for the gas density profile for weak magnetic fields (< 4 micro G}). This leads to an enhancement of the gas density in the central regions for nearly radial magnetic field configurations. Previous works had considered the force due to magnetic pressure alone which is the case only for a special set of field configurations. However, we see that there exists possible sets of configurations of ICM magnetic fields where the force due to magnetic tension will dominate. Subsequently, this effect is extrapolated for typical field strengths (~ 10 micro G) and scaling arguments are used to estimate the angular power due to secondary anisotropies at cluster scales. In particular we find that it is possible to explain the excess power reported by CMB experiments like CBI, BIMA, ACBAR at l > 2000 with sigma_8 ~ 0.8 (WMAP 5 year data) for typical cluster magnetic fields. In addition we also see that the magnetic field effect on the SZ temperature decrement is more pronounced for low mass clusters ( ~ 2 keV). Future SZ detections of low mass clusters at few arc second resolution will be able to probe this effect more precisely. Thus, it will be instructive to explore the implications of this model in greater detail in future works.Comment: 20 pages, 8 figure

    Giant Topological Hall Effect in the Noncollinear Phase of Two-Dimensional Antiferromagnetic Topological Insulator MnBi<sub>4</sub>Te<sub>7</sub>

    Get PDF
    Magnetic topological insulators provide an important platform for realizing several exotic quantum phenomena, such as the axion insulating state and the quantum anomalous Hall effect, owing to the interplay between topology and magnetism. MnBi4Te7 is a two-dimensional Z(2) antiferromagnetic (AFM) topological insulator with a Ne ' el temperature of similar to 13 K. In AFM materials, the topological Hall effect (THE) is observed owing to the existence of nontrivial spin structures. A material with noncollinearity that develops in the AFM phase rather than at the onset of the AFM order is particularly important. In this study, we observed that such an unanticipated THE starts to develop in a MnBi4Te7 single crystal when the magnetic field is rotated away from the easy axis (c-axis) of the system. Furthermore, the THE resistivity reaches a giant value of similar to 7 mu Omega-cm at 2 K when the angle between the magnetic field and the c-axis is 75 degrees. This value is significantly higher than the values for previously reported systems with noncoplanar structures. The THE can be ascribed to the noncoplanar spin structure resulting from the canted state during the spinflip transition in the ground AFM state of MnBi4Te7. The large THE at a relatively low applied field makes the MnBi4Te7 system a potential candidate for spintronic applications
    • …
    corecore