3,166 research outputs found

    Numerical simulations of the seasonal/latitudinal variations of atomic oxygen and nitric oxide in the lower thermosphere and mesosphere

    Get PDF
    A 2-Dimensional zonally-averaged thermospheric model and the global University College London (UCL) thermospheric model have been used to investigate the seasonal, solar activity and geomagnetic variation of atomic oxygen and nitric oxide. The 2-dimensional model includes detailed oxygen and nitrogen chemistry, with appropriate completion of the energy equation, by adding the thermal infrared cooling by O and NO. This solution includes solar and auroral production of odd nitrogen compounds and metastable species. This model has been used for three investigations; firstly, to study the interactions between atmospheric dynamics and minor species transport and density; secondly, to examine the seasonal variations of atomic oxygen and nitric oxide within the upper mesosphere and thermosphere and their response to solar and geomagnetic activity variations; thirdly, to study the factor of 7 to 8 peak nitric oxide density increase as solar F sub 10.7 cm flux increases from 70 to 240 reported from the Solar Mesospheric Explorer. Auroral production of NO is shown to be the dominant source at high latitudes, generating peak NO densities a factor of 10 greater than typical number densities at low latitudes. At low latitudes, the predicted variation of the peak NO density, near 110 km, with the solar F sub 10.7 cm flux is rather smaller than is observed. This is most likely due to an overestimate of the soft X-ray flux at low solar activity, for times of extremely low support number, as occurred in June 1986. As observed on pressure levels, the variation of O density is small. The global circulation during solstice and periods of elevated geomagnetic activity causes depletion of O in regions of upwelling, and enhancements in regions of downwelling

    The Reactivity of MgB2 with Common Substrate and Electronic Materials

    Full text link
    The reactivity of MgB2 with powdered forms of common substrate and electronic materials is reported. Reaction temperatures between 600 C and 800 C, encompassing the range commonly employed in thin-film fabrication, were studied. The materials tested for reactivity were ZrO2, yttria stabilized zirconia (YSZ), MgO, Al2O3, SiO2, SrTiO3, TiN, TaN, AlN, Si, and SiC. At 600 C, MgB2 reacted only with SiO2 and Si. At 800 C, however, reactions were observed for MgB2 with Al2O3, SiO2, Si, SiC, and SrTiO3. The Tc of MgB2 decreased in the reactions with SiC and Al2O3.Comment: 5 figure

    Tactical Population Movements and Distributions for Ideally Motivated Competitors

    Get PDF
    The spatial distributions of populations are a reflection of underlying rules for movement behavior in the context of the environment encountered by individuals. Here I study how ideal directed movement—in which individuals travel in the direction offering the most immediate perceived improvement to their personal fitness—dictates the spatial position of two populations occupying the same relative niche and engaged in competition via interference to an individual’s ability to gather resources. Drawing on the analytic derivation of equilibria, numerical simulations, and graphical assessments, I provide conditions under which sympatry, parapatry, or regional exclusion is expected during different phases of the community’s development. I also demonstrate that specific competitive asymmetries produce distinguishable distributions and invasion patterns and identify which populations are found centrally or peripherally. Dynamic and dispersal equilibria were examined for differences in the sensitivity to spatial variations in fitness, per capita mortality, metabolic efficiency, the strength of interspecific interference, resource collection speed, and the optimal location of each population along an environmental cline. These asymmetries were studied both in isolation and pairwise in fitness trade-off scenarios

    Relationship Between EU Membership & UK Medical Device Innovation

    Get PDF
    Thirty-eight million people contact a medical device every day in the UK. The UK has over 3000 companies employing 76 000 people in medical technology. Currently valued at ÂŁ17 billion and growing at rates exceeding 6%, the UK has remained a leader in medical device innovation. Governed under the European Union (EU) Medical Device legislations, it is demonstrated that this model, and the UK's continued membership accounts to an optimal balance between safety and risk with early access to new innovation. Leaving the EU would have a detrimental effect on UK businesses where EU legislation is used for market access. With the cost of regulation increasing, and the cost of products being forced to decrease, many UK businesses will no longer find it viable to innovate and manufacture within the UK

    Self-consistent modelling of the polar thermosphere and ionosphere to magnetospheric convection and precipitation (invited review)

    Get PDF
    It has recently been demonstrated that the dramatic effects of plasma precipitation and convection on the composition and dynamics of the polar thermosphere and ionosphere include a number of strong interactive, or feedback, processes. To aid the evaluation of these feedback processes, a joint three dimensional time dependent global model of the Earth's thermosphere and ionosphere was developed in a collaboration between University College London and Sheffield University. This model includes self consistent coupling between the thermosphere and the ionosphere in the polar regions. Some of the major features in the polar ionosphere, which the initial simulations indicate are due to the strong coupling of ions and neutrals in the presence of strong electric fields and energetic electron precipitation are reviewed. The model is also able to simulate seasonal and Universal time variations in the polar thermosphere and ionospheric regions which are due to the variations of solar photoionization in specific geomagnetic regions such as the cusp and polar cap

    Thermal-distortion analysis of a spacecraft box truss in geostationary orbit

    Get PDF
    The Mission to Planet Earth enlists the use of a geostationary platform to support Earth science monitoring instruments. The strongback for a proposed geostationary platform is a deployable box truss that supports two large diameter passive microwave radiometer (PMR) and several other science instruments. A study was performed to estimate the north-south and east-west pointing errors at the mounting locations of the two PMRs due to on-orbit thermal distortions of the main truss. The baseline configuration indicated that the east-west pointing error greatly exceeded the required limits. Primary origins of the pointing errors were identified, and methods for their reduction were discussed. Thermal performance enhancements to the truss structure were modeled and analyzed, including state-of-the-art surface coatings and insulation techniques. Comparisons of the thermal enhancements to the baseline were performed. Results demonstrated that using a thermal enclosure insulating technique reduced external heat fluxes, and distributed those heat fluxes more evenly throughout the structure, sufficiently reducing the pointing error to satisfy pointing accuracy requirements for the PMR's

    Population Management should be mainstreamed in the Philippine Development Agenda

    Get PDF
    The performance of the Philippine economy has been hindered by the country’s bourgeoning population due to its rapid population growth. For the last decade, the Philippines had the highest annual population growth rates in the Southeast Asian region. In 2009, it has become the second most populous country in the region with a population of more than 92 million, next only to Indonesia. Unfortunately, these have resulted to forgone economic growth, losing the chance to improve the poverty situation in the country. Thus, it is imperative to speed up the demographic transition in the country through proactive government population management policies aimed at harvesting the demographic dividends quickly. By performing simulation analyses on total fertility rate (TFR) under two scenarios, it was shown that the Philippines can hardly experience in the near future the Goldilock period, or the generation when fertility rate is neither too high nor too low, especially when the government does nothing to address the problem. Under the business-as-usual scenario, the Goldilock period will be reached by year 2030, or twenty years from now. In the second scenario where the government intervention targets only the households with unwanted fertility, the Goldilock period will be achieved ten years earlier, or in about 2020.Demographic Transition, Goldilock Period, Fertility Rate

    Swelling of acetylated wood in organic liquids

    Full text link
    To investigate the affinity of acetylated wood for organic liquids, Yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. The acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and/or very slowly. On the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. Consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. The effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. The easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups.Comment: to be published in J Wood Science (Japanese wood research society

    Strength of forelimb lateralization predicts motor errors in an insect

    Get PDF
    Lateralized behaviours are widespread in both vertebrates and invertebrates, suggesting that lateralization is advantageous. Yet evidence demonstrating proximate or ultimate advantages remains scarce, particularly in invertebrates or in species with individual-level lateralization. Desert locusts (Schistocerca gregaria) are biased in the forelimb they use to perform targeted reaching across a gap. The forelimb and strength of this bias differed among individuals, indicative of individual-level lateralization. Here we show that strongly biased locusts perform better during gap-crossing, making fewer errors with their preferred forelimb. The number of targeting errors locusts make negatively correlates with the strength of forelimb lateralization. This provides evidence that stronger lateralization confers an advantage in terms of improved motor control in an invertebrate with individual-level lateralization
    • …
    corecore