544 research outputs found

    The Colorado School of Mines Nevada geothermal study

    Get PDF
    Geothermal systems in the Basin and Range Province of the western United States probably differ in many respects from geothermal systems already discovered in other parts of the world because of the unique tectonic setting. To investigate this, a study of the geothermal occurrences at Fly Ranch, approximately 100 miles north of Reno, Nevada, has been undertaken. Ample evidence for a geothermal system exists in this area, including the surface expression of heat flow in the form of hot springs, an extensive area of low electrical resistivity, and a high level of seismicity along faults bounding the thermal area. However, geophysical and geological studies have not yet provided evidence for a local heat source at depth. Additional detailed geophysical and geological studies, as well as drilling, must be completed before the geothermal system can be described fully

    Stratospheric dynamics and transport studies

    Get PDF
    A three dimensional General Circulation Model/Transport Model is used to simulate stratospheric circulation and constituent distributions. Model simulations are analyzed to interpret radiative, chemical, and dynamical processes and their mutual interactions. Concurrent complementary studies are conducted using both global satellite data and other appropriate data. Comparisons of model simulations and data analysis studies are used to aid in understanding stratospheric dynamics and transport processes and to assess the validity of current theory and models

    Mitigation of Engine Inlet Distortion Through Adjoint-Based Design

    Get PDF
    The adjoint-based design capability in FUN3D is extended to allow efficient gradient- based optimization and design of concepts with highly integrated aero-propulsive systems. A circumferential distortion calculation, along with the derivatives needed to perform adjoint-based design, have been implemented in FUN3D. This newly implemented distortion calculation can be used not only for design but also to drive the existing mesh adaptation process and reduce the error associated with the fan distortion calculation. The design capability is demonstrated by the shape optimization of an in-house aircraft concept equipped with an aft fuselage propulsor. The optimization objective is the minimization of flow distortion at the aerodynamic interface plane of this aft fuselage propulsor

    Incorporating next-to-leading order matrix elements for hadronic diboson production in showering event generators

    Get PDF
    A method for incorporating information from next-to-leading order QCD matrix elements for hadronic diboson production into showering event generators is presented. In the hard central region (high jet transverse momentum) where perturbative QCD is reliable, events are sampled according to the first order tree level matrix element. In the soft and collinear regions next-to-leading order corrections are approximated by calculating the differential cross section across the phase space accessible to the parton shower using the first order (virtual graphs included) matrix element. The parton shower then provides an all-orders exclusive description of parton emissions. Events generated in this way provide a physical result across the entire jet transverse momentum spectrum, have next-to-leading order normalization everywhere, and have positive definite event weights. The method is generalizable without modification to any color singlet production process.Comment: 13 pages, 9 figure

    Exclusive W + photon production in proton-antiproton collisions I: general formalism

    Full text link
    We present a detailed computation of the fully exclusive cross section of p + antip --> W + photon + X with X = 0 and 1 jet in the framework of the factorization theorem and dimensional regularization. Order alpha-strong and photon bremsstrahlung contributions are discussed in the MS-bar mass factorization scheme. The resulting expressions are ready to be implemented numerically using Monte Carlo techniques to compute single and double differential cross sections and correlations between outgoing pairs of particles.Comment: ITP-SB-93-72, 40 pages, LateX. 3*4 figures in separate file. ([email protected]) ([email protected]

    Centrosome amplification mediates small extracellular vesicles secretion via lysosome disruption

    Get PDF
    PreprintSummary Bidirectional communication between cells and their surrounding environment is critical in both normal and pathological settings. Extracellular vesicles (EVs), which facilitate the horizontal transfer of molecules between cells, are recognized as an important constituent of cell-cell communication. In cancer, alterations in EV secretion contribute to the growth and metastasis of tumor cells. However, the mechanisms underlying these changes remain largely unknown. Here, we show that centrosome amplification is associated with and sufficient to promote small extracellular vesicle ( S EV) secretion in pancreatic cancer cells. This is a direct result due of lysosomal dysfunction, caused by increased reactive oxygen species (ROS) downstream of extra centrosomes. Defects in lysosome function promotes multivesicular body fusion with the plasma membrane, thereby enhancing S EV secretion. Furthermore, we find that S EVs secreted in response to amplified centrosomes are functionally distinct and activate pancreatic stellate cells (PSCs). These activated PSCs promote the invasion of pancreatic cancer cells in heterotypic 3-D cultures. We propose that S EVs secreted by cancer cells with amplified centrosomes influence the bidirectional communication between the tumor cells and the surrounding stroma to promote malignancy

    Transistor behavior via Au clusters etched from electrodes in an acidic gating solution: metal nanoparticles mimicking conducting polymers

    Full text link
    We report that the electrical conductance between closely-spaced gold electrodes in acid solution can be turned from off [insulating; I] to on [conducting; C] to off again by monotonically sweeping a gate voltage applied to the solution. We propose that this ICI transistor action is due to an electrochemical process dependent on nanoparticles etched from the surface of the gold electrodes. These measurements mimic closely the characteristics of nanoscale acid-gated polyaniline transistors, so that researchers should guard against misinterpreting this effect in future molecular-electronics experiments.Comment: 17 pages, 4 figure

    Applicability constraints of the Equivalence Theorem

    Get PDF
    In this work we study the applicability of the Equivalence Theorem, either for unitary models or within an effective lagrangian approach. There are two types of limitations: the existence of a validity energy window and the use of the lowest order in the electroweak constants. For the first kind, we consider some methods, based on dispersion theory or the large NN limit, that allow us to extend the applicability. For the second, we have obtained numerical estimates of the effect of neglecting higher orders in the perturbative expansion.Comment: Final version to appear in Phys. Rev. D. Power counting and energy range estimates have been refined, improved referencing. 4 postscript figures, uses revtex. FT-UCM 1/9

    The interactive on-site inspection system: An information management system to support arms control inspections

    Get PDF
    The increasing use of on-site inspection (OSI) to meet the nation`s obligations with recently signed treaties requires the nation to manage a variety of inspection requirements. This document describes a prototype automated system to assist in the preparation and management of these inspections
    corecore