20 research outputs found

    PHOTOS Interface in C++; Technical and Physics Documentation

    Full text link
    For five years now, PHOTOS Monte Carlo for bremsstrahlung in the decay of particles and resonances has been available with an interface to the C++ HepMC event record. The main purpose of the present paper is to document the technical aspects of the PHOTOS Monte Carlo installation and present version use. A multitude of test results and examples are distributed together with the program code. The PHOTOS C++ physics precision is better than its FORTRAN predecessor and more convenient steering options are also available. An algorithm for the event record interface necessary for process dependent photon emission kernel is implemented. It is used in Z and W decays for kernels of complete first order matrix elements of the decays. Additional emission of final state lepton pairs is also available. Physics assumptions used in the program and properties of the solution are reviewed. In particular, it is explained how the second order matrix elements were used in design and validation of the program iteration procedure. Also, it is explained that the phase space parametrization used in the program is exact.Comment: Updated version; for the program as of April 201

    MC generator TAUOLA: implementation of Resonance Chiral Theory for two and three meson modes. Comparison with experiment

    Full text link
    We present a partial upgrade of the Monte Carlo event generator TAUOLA with the two and three hadron decay modes using the theoretical models based on Resonance Chiral Theory. These modes account for 88% of total hadronic width of the tau meson. First results of the model parameters have been obtained using BaBar data for three pion mode.Comment: 5 pages, 1 figure, contribution to the Proceedings of the QCD@Work12 Conferenc

    Application of TauSpinner for studies on tau-lepton polarization and spin correlations in Z, W and H decays at LHC

    Get PDF
    The tau-lepton plays an important role in the physics program at LHC. Its spin can be used for separation of signal from background or in measuring properties of New Particles decaying to tau leptons. The TauSpinner package represents a tool to modify tau spin effects in any sample containing tau leptons. Generated events, featuring taus produced from intermediate state W, Z, H bosons can be used as an input. The information on the polarization and spin correlations is reconstructed from the kinematics of the tau lepton(s) (nutau in case of W-mediated processes) and tau decay products. By weights, attributed on the event-by-event basis, it enables numerical evaluation and/or modification of the spin effects. We review distributions to monitor spin effects in leptonic and hadronic tau decays with up to three pions, to provide benchmarks for validation of spin content of the event sample and to visualize the tau lepton spin polarization and correlation effects. The demonstration examples for use of TauSpinner libraries, are documented. New validation methods of such an approach are provided. Other topics, like TauSpinner systematic errors or sensitivity of experimental distributions to spin, are addressed in part only. This approach is of interest for implementation of spin effects in embedded tau lepton samples, where Z to mu mu events from data of muons are replaced by simulated tau leptons. Embedding is used at LHC for estimating Z to tau tau background to H to tau tau signatures.Comment: 1+41 pages, 5 figures in main text, multitude of figures in appendice

    Theoretical inputs and errors in the new hadronic currents in TAUOLA

    Full text link
    The new hadronic currents implemented in the TAUOLA library are obtained in the unified and consistent framework of Resonance Chiral Theory: a Lagrangian approach in which the resonances exchanged in the hadronic tau decays are active degrees of freedom included in a way that reproduces the low-energy results of Chiral Perturbation Theory. The short-distance QCD constraints on the imaginary part of the spin-one correlators yield relations among the couplings that render the theory predictive. In this communication, the obtaining of the two- and three-meson form factors is sketched. One of the criticisms to our framework is that the error may be as large as 1/3, since it is a realization of the large-N_C limit of QCD in a meson theory. A number of arguments are given which disfavor that claim pointing to smaller errors, which would explain the phenomenological success of our description in these decays. Finally, other minor sources of error and current improvements of the code are discussed.Comment: 5 pages, no figures, contribution to the Proceedings of the QCD@Work12 Conferenc

    TauSpinner: a tool for simulating CP effects in H to tau tau decays at LHC

    Get PDF
    In this paper, we discuss application of the TauSpinner package as a simulation tool for measuring the CP state of the newly discovered Higgs boson using the transverse spin correlations in the H to tau tau decay channel. We discuss application for its main background Z/gamma* to tau tau as well. The TauSpinner package allows one to add, with the help of weights, transverse spin correlations corresponding to any mixture of scalar/pseudoscalar state, on already existing events using information from the kinematics of outgoing tau leptons and their decay products only. This procedure can be used when polarimetric vectors of the taus decays and density matrix for tau-pair production are not stored with the event sample. We concentrate on the well-defined effects for the Higgs (or Higgs-like scalar) decays, which are physically separated from the production processes. TauSpinner also allows to reintroduce (or remove) spin correlations to events from Drell-Yan Z/gamma* to tau tau process, the main background for the Higgs parity observables, again with the help of weights only. From the literature, we recall well-established observables, developed for measuring the CP of the Higgs, and use them as benchmarks for illustrating applications of the TauSpinner package. We also include a description of the code and prepared testing examples.Comment: 1+18 pages,4 figure

    Resonance Chiral Lagrangian Currents and Experimental Data for τπππ+ντ\tau^-\to\pi^{-}\pi^{-}\pi^{+}\nu_{\tau}

    Full text link
    In this paper we document the modifications introduced to the previous version of the Resonance Chiral Lagrangian current ({\it Phys.Rev.} {\bf D86} (2012) 113008) of the τ±π±π±πντ\tau^\pm \to \pi^\pm \pi^\pm \pi^\mp \nu_\tau decay which enable the one dimensional distributions measured by the BaBar collaboration to be well modeled. The main change required to model the data is the addition of the σ\sigma resonance. Systematic errors, theoretical and experimental ones, limitations due to fits of one dimensional distributions only, and resulting difficulties and statistical/systematic errors for fitted parameters are addressed. The current and fitting environment is ready for comparisons with the fully exclusive experimental data. The present result for τ±π±π±πντ\tau^\pm \to \pi^\pm \pi^\pm \pi^\mp \nu_\tau is encouraging for work on other τ\tau decay modes and Resonance Chiral Lagrangian based currents.Comment: 16 pages, 2 figure

    TauSpinner program for studies on spin effect in tau production at the LHC

    Full text link
    Final states involving tau leptons are important components of searches for new particles at the Large Hadron Collider (LHC). A proper treatment of tau spin effects in the Monte Carlo (MC) simulations is important for understanding the detector acceptance as well as for the measurements of tau polarization and tau spin correlations. In this note we present a TauSpinner package designed to simulate the spin effects. It relies on the availability of the four-momenta of the taus and their decay products in the analyzed data. The flavor and the four-momentum of the boson decaying to the tau-tau+ or tau+- nu pair need to be known. In the Z/gamma* case the initial state quark configuration is attributed from the intermediate boson kinematics, and the parton distribution functions (PDF's). TauSpinner is the first algorithm suitable for emulation of tau spin effects in tau-embedded samples. It is also the first tool that offers the user the flexibility to simulate a desired spin effect at the analysis level. An algorithm to attribute tau helicity states to a previously generated sample is also provided.Comment: 13 pages, 6 figures New feature, an algorithm to attribute tau helicity states introduced in v

    PHOTOS Interface in C++: Technical and Physics Documentation

    No full text
    For five years now, PHOTOS Monte Carlo for bremsstrahlung in the decay of particles and resonances has been available with an interface to the C++ HepMC event record. The main purpose of the present paper is to document the technical aspects of the PHOTOS Monte Carlo installation and present version use. A multitude of test results and examples are distributed together with the program code. The PHOTOS C++ physics precision is better than its FORTRAN predecessor and more convenient steering options are also available. An algorithm for the event record interface necessary for process dependent photon emission kernel is implemented. It is used in Z and W decays for kernels of complete first order matrix elements of the decays. Additional emission of final state lepton pairs is also available. Physics assumptions used in the program and properties of the solution are reviewed. In particular, it is explained how the second order matrix elements were used in design and validation of the program iteration procedure. Also, it is explained that the phase space parametrization used in the program is exact.For five years now, PHOTOS Monte Carlo for bremsstrahlung in the decay of particles and resonances has been available with an interface to the C++ HepMC event record. The main purpose of the present paper is to document the technical aspects of the PHOTOS Monte Carlo installation and present version use. A multitude of test results and examples are distributed together with the program code. The PHOTOS C++ physics precision is better than its FORTRAN predecessor and more convenient steering options are also available. An algorithm for the event record interface necessary for process dependent photon emission kernel is implemented. It is used in Z and W decays for kernels of complete first order matrix elements of the decays. Additional emission of final state lepton pairs is also available. Physics assumptions used in the program and properties of the solution are reviewed. In particular, it is explained how the second order matrix elements were used in design and validation of the program iteration procedure. Also, it is explained that the phase space parametrization used in the program is exact.For five years now, PHOTOS Monte Carlo for bremsstrahlung in the decay of particles and resonances has been available with an interface to the C++ HepMC event record. The main purpose of the present paper is to document the technical aspects of the PHOTOS Monte Carlo installation and present version use. A multitude of test results and examples are distributed together with the program code

    Documentation of TauSpinner algorithms: program for simulating spin effects in \uptau τ -lepton production at LHC

    No full text
    Abstract \uptau τ -leptons produced in pp collisions allow to measure Standard Model parameters and offer probes for New Physics. The TauSpinner program can be used to modify spin (or production matrix elements) effects in any \uptau τ sample. It relies on the kinematics of outgoing particles: \uptau τ lepton(s) (also \upnu _\uptau ντ in case of W-mediated processes, optionally also four-moments of accompanying hard jets) and \uptau τ decay products. No other information is required from the event record. With calculated spin (or production/decay matrix element) weights, attributed on the event-by-event basis, modifications to the spin/decay/production features, is possible without the need for regenerating events. With TauSpinner algorithms, the experimental techniques developed over years since LEP 1 times are already used and extended for LHC applications. The purpose of the present publication is to systematically document physics basis of the program, and to overview its application domain and systematic errors

    MC-TESTER v. 1.23: a universal tool for comparisons of Monte Carlo predictions for particle decays in high energy physics

    No full text
    Theoretical predictions in high energy physics are routinely provided in the form of Monte Carlo generators. Comparisons of predictions from different programs and/or different initialization set-ups are often necessary. MC-TESTER can be used for such tests of decays of intermediate states (particles or resonances) in a semi-automated way. Since 2002 new functionalities were introduced into the package. In particular, it works now with the HepMC event record, the standard of C++ programs. The complete set-up for benchmarking the interface, such as between tau-lepton production and decay, including QED bremsstrahlung effects is shown. The example is chosen to illustrate the new options introduced into the program and novel ways of its use. From the technical perspective, our paper documents program updates and supplements previous documentation. As in the past, our test consists of two steps. Distinct Monte Carlo programs are run separately; events with decays of a chosen particle are searched, and information is stored by MC-TESTER. Then, at the analysis step, information from the pair of such runs may be compared and represented in a form of tables and plots
    corecore