959 research outputs found

    Meeting the four-hour deadline in an A&E department

    Get PDF
    This is the print version of the Article. The official published version can be obtained from the link below - Copyright @ 2011 EmeraldPurpose – Accident and emergency (A&E) departments experience a secondary peak in patient length of stay (LoS) at around four hours, caused by the coping strategies used to meet the operational standards imposed by government. The aim of this paper is to build a discrete-event simulation model that captures the coping strategies and more accurately reflects the processes that occur within an A&E department. Design/methodology/approach – A discrete-event simulation (DES) model was used to capture the A&E process at a UK hospital and record the LoS for each patient. Input data on 4,150 arrivals over three one-week periods and staffing levels was obtained from hospital records, while output data were compared with the corresponding records. Expert opinion was used to generate the pathways and model the decision-making processes. Findings – The authors were able to replicate accurately the LoS distribution for the hospital. The model was then applied to a second configuration that had been trialled there; again, the results also reflected the experiences of the hospital. Practical implications – This demonstrates that the coping strategies, such as re-prioritising patients based on current length of time in the department, employed in A&E departments have an impact on LoS of patients and therefore need to be considered when building predictive models if confidence in the results is to be justified. Originality/value – As far as the authors are aware this is the first time that these coping strategies have been included within a simulation model, and therefore the first time that the peak around the four hours has been analysed so accurately using a model

    Effects of focal frontal lesions on response inhibition

    Get PDF
    This study examined the performance of 38 normal subjects and 43 patients with focal lesions of the frontal lobes on a simple go-nogo task where the probability of the nogo stimulus was either 75% or 25%. Patients with lesions to the superior medial parts of the frontal lobes, in particular to the left superior portion of Brodmann area 6 (which includes the supplementary motor areas and the premotor areas for the right hand) had an increased number of false alarms (incorrect responses to the nogo stimulus). These results indicate that area 6 is specifically involved in the inhibition of response. Patients with lesions to the right anterior cingulate (areas 24 and 32) were slower and more variable in their reaction time. These findings could be explained by an inability to sustain stimulus-response contingencies. Lesions to the right ventrolateral prefrontal cortex (Brodmann areas 44, 45, 47) also increased the variability of response, perhaps by disrupting monitoring performance

    Control of <i>Xenopus</i> tadpole locomotion via selective expression of Ih in excitatory interneurons

    Get PDF
    The authors are grateful for the support of the Biotechnology and Biological Science Research Council (BBSRC) [grant number BB/J01446X/1 and BB/M024946/1] and the Wellcome Trust-University of Edinburgh Institutional Strategic Support Fund (ISSF).Locomotion relies on the coordinated activity of rhythmic neurons in the hindbrain and spinal cord, and depends critically on the intrinsic properties of excitatory interneurons. Therefore, understanding how ion channels sculpt the properties of these interneurons, and the consequences for circuit function and behavior, is an important task. The hyperpolarization-activated cation current, Ih, is known to play important roles in shaping neuronal properties and for rhythm generation in many neuronal networks. We show in stage 42 Xenopus laevis frog tadpoles that Ih is strongly expressed only in excitatory descending interneurons (dINs), an important ipsilaterally projecting population that drives swimming activity. The voltage-dependent HCN channel blocker ZD7288 completely abolished a prominent depolarising sag potential in response to hyperpolarization, the hallmark of Ih, and hyperpolarized dINs. ZD7288 also affected dIN post-inhibitory rebound firing, upon which locomotor rhythm generation relies, and disrupted locomotor output. Block of Ih also unmasked an activity-dependent ultraslow afterhyperpolarization (usAHP) in dINs following swimming, mediated by a dynamic Na/K pump current. This usAHP, unmasked in dINs by ZD7288, resulted in suprathreshold stimuli failing to evoke swimming at short inter-swim intervals, indicating an important role for Ih in maintaining swim generation capacity and in setting the post-swim refractory period of the network. Collectively, our data suggest that the selective expression of Ih in dINs determines specific dIN properties that are important for rhythm generation and counteracts an activity- dependent usAHP to ensure that dINs can maintain coordinated swimming over a wide range of inter-swim intervals.Publisher PDFPeer reviewe

    Multiple Effects of Prefrontal Lesions on Task-Switching

    Get PDF
    This study examined the performance of 41 patients with focal prefrontal cortical lesions and 38 healthy controls on a task-switching procedure. Three different conditions were evaluated: single tasks without switches and two switching tasks with the currently relevant task signalled either 1500 ms (Long Cue) or 200 ms (Short Cue) before the stimulus. Patients with Superior Medial lesions showed both a general slowing of reaction time (RT) and a significantly increased switch cost as measured by RT. No other prefrontal group showed this increased reaction time switch cost. Increased error rates in the switching conditions, on the other hand, were observed in patients with Inferior Medial lesions and, to a lesser extent, ones with Superior Medial lesions. Patients with left dorsolateral lesions (9/46v) showed slower learning of the task as indicated by a high error rate early on. Several different processes are involved in task-switching and these are selectively disrupted by lesions to specific areas of the frontal lobes

    Mapping task-switching in frontal cortex through neuropsychological group studies

    Get PDF
    This paper considers evidence provided by large neuropsychological group studies and meta-analyses of functional imaging experiments on the location in frontal cortex of the subprocesses involved in the carrying out of task-switching paradigms. The function of the individual subprocesses is also considered in the light of analyses of the performance of normal subjects

    Sodium pump regulation of locomotor control circuits

    Get PDF
    The authors are grateful for the financial support of the BBSRC (grant numbers: BB/M024946/1 and BB/JO1446X/1), the Carnegie Trust and the University of St Andrews.Sodium pumps are ubiquitously expressed membrane proteins that extrude three Na+ ions in exchange for two K+ ions using ATP as an energy source. Recent studies have illuminated additional, dynamic roles for sodium pumps in regulating the excitability of neuronal networks in an activity-dependent fashion. Here we review their role in a novel form of short-term memory within rhythmic locomotor networks. The data we review derives mainly from recent studies on Xenopus tadpoles and neonatal mice. The role and underlying mechanisms of pump action broadly match previously published data from an invertebrate, the Drosophila larva. We therefore propose a highly conserved mechanism by which sodium pump activity increases following a bout of locomotion. This results in an ultraslow afterhyperpolarisation (usAHP) of the membrane potential that lasts around 1 minute, but which only occurs in around half the network neurons. This usAHP in turn alters network excitability so that network output is reduced in a locomotor interval-dependent manner. The pumps therefore confer on spinal locomotor networks a temporary memory trace of recent network performance.PostprintPeer reviewe

    Bimodal modulation of short-term motor memory via dynamic sodium pumps in a vertebrate spinal cord

    Get PDF
    Authors are grateful for the financial support of this research by the University of St Andrews, the E&RS Neuroscience research fund and BBSRC grant BB/T015705/1.Dynamic neuronal Na+/K+ pumps normally only respond to intense action potential firing owing to their low affinity for intracellular Na+. Recruitment of these Na+ pumps produces a post-activity ultraslow afterhyperpolarization (usAHP) up to ∼10 mV in amplitude and ∼60 s in duration, which influences neuronal properties and future network output. In spinal motor networks, the usAHP underlies short-term motor memory (STMM), reducing the intensity and duration of locomotor network output in a manner dependent on the interval between locomotor bouts. In contrast to tonically active Na+ pumps that help set and maintain the resting membrane potential, dynamic Na+ pumps are selectively antagonized by low concentrations of ouabain, which, we show, blocks both the usAHP and STMM. We examined whether dynamic Na+ pumps and STMM can be influenced by neuromodulators, focusing on 5-HT and nitric oxide. Bath-applied 5-HT alone had no significant effect on the usAHP or STMM. However, this is due to the simultaneous activation of two distinct 5-HT receptor subtypes (5-HT7 and 5-HT2a) that have opposing facilitatory and suppressive influences, respectively, on these two features of the locomotor system. Nitric oxide modulation exerts a potent inhibitory effect that can completely block the usAHP and erase STMM. Using selective blockers of 5-HT7 and 5-HT2a receptors and a nitric oxide scavenger, PTIO, we further provide evidence that the two modulators constitute an endogenous control system that determines how the spinal network self-regulates the intensity of locomotor output in light of recent past experience.Publisher PDFPeer reviewe

    Impact of nocturnal hemodialysis on the variability of heart rate and duration of hypoxemia during sleep

    Get PDF
    Impact of nocturnal hemodialysis on the variability of heart rate and duration of hypoxemia during sleep.BackgroundNocturnal hemodialysis (NHD) alleviates uremia-related sleep apnea, a condition characterized by increased sympathetic activity and diminished heart rate (HR) variability. We tested the hypothesis that NHD reduces both hypoxemia and sympathetic neural contributions to HR variability during sleep.MethodsEpisodes of apnea and hypopnea and the duration of nocturnal hypoxemia during sleep were determined in 9 end-stage renal disease (ESRD) patients (age: 44 ± 2) (mean ± SEM) before and after conversion from conventional hemodialysis (CHD) to NHD, and in 10 control subjects (age: 45 ± 3) with normal renal function and without sleep apnea. Low frequency (LF) (0.05-0.15 Hz) and high frequency (HF) (0.15-0.5 Hz) HR spectral power during stage 2 sleep was calculated (Fast Fourier transformation). Patients were studied 4 times (1day before and on the night after their CHD session) and 6–15months after conversion to NHD, while receiving NHD and on a non-dialysis night.ResultsNHD decreased the frequency of apnea and hypopnea (from 29.7 ± 9.3 to 8.2 ± 2.0 episodes per hour, P = 0.02), and duration of nocturnal hypoxemia (from 13.9 ± 5.2 to 2.6 ± 1.9% of total sleep time, P = 0.02). As CHD recipients, ESRD patients had faster nocturnal heart rates (79 ± 2 vs. 58 ± 1min-1, P = 0.03) and lower HF (vagal) (78 ± 27 vs. 6726 ± 4556ms2, P = 0.001) spectral power than control subjects. After conversion to NHD, HR fell (from 79 ± 2 to 66 ± 1min-1, P = 0.03) and HF power increased (from 78 ± 27 to 637 ± 139ms2, P = 0.001). The HF/HF+LF ratio, an index of vagal HR modulation, was lower during CHD (0.16 ± 0.03 vs. 0.42 ± 0.05 in control subjects, P < 0.05) and increased (to 0.45 ± 0.05, P < 0.001) after conversion to NHD. The LF/HF ratio, a representation of sympathetic HR modulation, which was significantly higher during CHD than in control subjects (2.77 ± 0.82 vs. 0.71 ± 0.11, P < 0.05), was also normalized by NHD (0.74 ± 0.12, P < 0.05, compared with CHD).ConclusionHigher heart rates and impaired vagal and augmented sympathetic HR modulation during sleep in ESRD patients are normalized by NHD. Potential mechanisms for these observations include attenuation of surges in sympathetic outflow elicited by apnea and hypoxia during sleep, normalization of nocturnal breathing patterns that influence HRV, and removal, by increased dialysis, of a sympatho-excitatory stimulus of renal origin
    corecore