84 research outputs found

    5-Formylcytosine can be a stable DNA modification in mammals.

    Get PDF
    5-Formylcytosine (5fC) is a rare base found in mammalian DNA and thought to be involved in active DNA demethylation. Here, we show that developmental dynamics of 5fC levels in mouse DNA differ from those of 5-hydroxymethylcytosine (5hmC), and using stable isotope labeling in vivo, we show that 5fC can be a stable DNA modification. These results suggest that 5fC has functional roles in DNA that go beyond being a demethylation intermediate.This work was supported by the Cancer Research UK (C14303/A17197, S.B.), The Wellcome Trust (WT099232, S.B.; WT095645/Z/11/Z, W.R.) and the BBSRC (BB/K010867/1, W.R.).This is the accepted manuscript. It is currently embargoed pending publication

    Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications.

    Get PDF
    Methylation of cytosine deoxynucleotides generates 5-methylcytosine (m(5)dC), a well-established epigenetic mark. However, in higher eukaryotes much less is known about modifications affecting other deoxynucleotides. Here, we report the detection of N(6)-methyldeoxyadenosine (m(6)dA) in vertebrate DNA, specifically in Xenopus laevis but also in other species including mouse and human. Our methylome analysis reveals that m(6)dA is widely distributed across the eukaryotic genome and is present in different cell types but is commonly depleted from gene exons. Thus, direct DNA modifications might be more widespread than previously thought.M.J.K. was supported by the Long-Term Human Frontiers Fellowship (LT000149/2010-L), the Medical Research Council grant (G1001690), and by the Isaac Newton Trust Fellowship (R G76588). The work was sponsored by the Biotechnology and Biological Sciences Research Council grant BB/M022994/1 (J.B.G. and M.J.K.). The Gurdon laboratory is funded by the grant 101050/Z/13/Z (J.B.G.) from the Wellcome Trust, and is supported by the Gurdon Institute core grants, namely by the Wellcome Trust Core Grant (092096/Z/10/Z) and by the Cancer Research UK Grant (C6946/A14492). C.R.B. and G.E.A. are funded by the Wellcome Trust Core Grant. We are grateful to D. Simpson and R. Jones-Green for preparing X. laevis eggs and oocytes, F. Miller for providing us with M. musculus tissue, T. Dyl for X. laevis eggs and D. rerio samples, and to Gurdon laboratory members for their critical comments. We thank U. Ruether for providing us with M. musculus kidney DNA (Entwicklungs- und Molekularbiologie der Tiere, Heinrich Heine Universitaet Duesseldorf, Germany). We also thank J. Ahringer, S. Jackson, A. Bannister and T. Kouzarides for critical input and advice, M. Sciacovelli and E. Gaude for suggestions.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nsmb.314

    TET family dioxygenases and DNA demethylation in stem cells and cancers

    Get PDF
    The methylation of cytosine and subsequent oxidation constitutes a fundamental epigenetic modification in mammalian genomes, and its abnormalities are intimately coupled to various pathogenic processes including cancer development. Enzymes of the Ten-eleven translocation (TET) family catalyze the stepwise oxidation of 5-methylcytosine in DNA to 5-hydroxymethylcytosine and further oxidation products. These oxidized 5-methylcytosine derivatives represent intermediates in the reversal of cytosine methylation, and also serve as stable epigenetic modifications that exert distinctive regulatory roles. It is becoming increasingly obvious that TET proteins and their catalytic products are key regulators of embryonic development, stem cell functions and lineage specification. Over the past several years, the function of TET proteins as a barrier between normal and malignant states has been extensively investigated. Dysregulation of TET protein expression or function is commonly observed in a wide range of cancers. Notably, TET loss-of-function is causally related to the onset and progression of hematologic malignancy in vivo. In this review, we focus on recent advances in the mechanistic understanding of DNA methylation-demethylation dynamics, and their potential regulatory functions in cellular differentiation and oncogenic transformation

    TET proteins and the control of cytosine demethylation in cancer

    Get PDF

    Unraveling a Ligand Induced Twist of a Homodimeric Enzyme by Pulsed Electron Electron Double Resonance

    No full text
    Mechanistic insights into protein-ligand interactions can yield chemical tools for modulating protein function and enable their use for therapeutic purposes. For the homodimeric enzyme tRNA-guanine transglycosylase (TGT), a putative virulence target of shigellosis, ligand binding has been shown by crystallography to transform the functional dimer geometry into an incompetent twisted one. However, crystallographic observation of both end states does neither verify the ligand-induced transformation of one dimer into the other in solution nor does it shed light on the underlying transformation mechanism. We addressed these questions in an approach that combines site-directed spin labeling (SDSL) with distance measurements based on pulsed electron-electron double resonance (PELDOR or DEER) spectroscopy. We observed an equilibrium between the functional and twisted dimer that depends on the type of ligand, with a pyranose-substituted ligand being the most potent one in shifting the equilibrium toward the twisted dimer. Our experiments suggest a dissociation-association mechanism for the formation of the twisted dimer upon ligand binding.ISSN:1433-7851ISSN:1521-3773ISSN:0570-083

    CDA directs metabolism of epigenetic nucleosides revealing a therapeutic window in cancer

    Get PDF
    Cells require nucleotides to support DNA replication and repair damaged DNA. In addition to de novo synthesis, cells recycle nucleotides from the DNA of dying cells or from cellular material ingested through the diet. Salvaged nucleosides come with the complication that they can contain epigenetic modifications. Because epigenetic inheritance of DNA methylation mainly relies on copying of the modification pattern from parental strands1, 2, 3, random incorporation of pre-modified bases during replication could have profound implications for epigenome fidelity and yield adverse cellular phenotypes. Although the salvage mechanism of 5-methyl-2′deoxycytidine (5mdC) has been investigated before4, 5, 6, it remains unknown how cells deal with the recently identified oxidized forms of 5mdC: 5-hydroxymethyl-2′deoxycytidine (5hmdC), 5-formy-2′deoxycytidine (5fdC) and 5-carboxyl-2′deoxycytidine (5cadC)7, 8, 9, 10. Here we show that enzymes of the nucleotide salvage pathway display substrate selectivity, effectively protecting newly synthesized DNA from the incorporation of epigenetically modified forms of cytosine. Thus, cell lines and animals can tolerate high doses of these modified cytidines without any deleterious effects on physiology. Notably, by screening cancer cell lines for growth defects after exposure to 5hmdC, we unexpectedly identify a subset of cell lines in which 5hmdC or 5fdC administration leads to cell lethality. Using genomic approaches, we show that the susceptible cell lines overexpress cytidine deaminase (CDA). CDA converts 5hmdC and 5fdC into variants of uridine that are incorporated into DNA, resulting in accumulation of DNA damage, and ultimately, cell death. Our observations extend current knowledge of the nucleotide salvage pathway by revealing the metabolism of oxidized epigenetic bases, and suggest a new therapeutic option for cancers, such as pancreatic cancer, that have CDA overexpression and are resistant to treatment with other cytidine analogues11

    <sup>19</sup>F-NMR unveils the ligand-induced conformation of a catalytically inactive twisted homodimer of tRNA-guanine transglycosylase.

    No full text
    Understanding the structural arrangements of protein oligomers can support the design of ligands that interfere with their function in order to develop new therapeutic concepts for disease treatment. Recent crystallographic studies have elucidated a novel twisted and functionally inactive form of the homodimeric enzyme tRNA-guanine transglycosylase (TGT), a putative target in the fight against shigellosis. Active-site ligands have been identified that stimulate the rearrangement of one monomeric subunit by 130° against the other one to form an inactive twisted homodimer state. To assess whether the crystallographic observations also reflect the conformation in solution and rule out effects from crystal packing, we performed 19F-NMR spectroscopy with the introduction of 5-fluorotryptophans at four sites in TGT. The inhibitor-induced conformation of TGT in solution was assessed based on 19F-NMR chemical shift perturbations. We investigated the effect of C(4) substituted lin-benzoguanine ligands and identified a correlation between dynamic protein rearrangements and ligand-binding features in the corresponding crystal structures. These involve the destabilization of a helix next to the active site and the integrity of a flexible loop-helix motif. Ligands that either completely lack an attached C(4) substituent or use it to stabilize the geometry of the functionally competent dimer state do not indicate the presence of the twisted dimer form in the NMR spectra. The perturbation of crucial structural motifs in the inhibitors correlates with an increasing formation of the inactive twisted dimer state, suggesting these ligands are able to shift a conformational equilibrium from active C2-symmetric to inactive twisted dimer conformations. These findings suggest a novel concept for the design of drug candidates for further development
    corecore