5,872 research outputs found

    An investigation into the feasibility of myoglobin-based single-electron transistors

    Full text link
    Myoglobin single-electron transistors were investigated using nanometer- gap platinum electrodes fabricated by electromigration at cryogenic temperatures. Apomyoglobin (myoglobin without heme group) was used as a reference. The results suggest single electron transport is mediated by resonant tunneling with the electronic and vibrational levels of the heme group in a single protein. They also represent a proof-of-principle that proteins with redox centers across nanometer-gap electrodes can be utilized to fabricate single-electron transistors. The protein orientation and conformation may significantly affect the conductance of these devices. Future improvements in device reproducibility and yield will require control of these factors

    Characterizing SWCNT Dispersion in Polymer Composites

    Get PDF
    The new wave of single wall carbon nanotube (SWCNT) infused composites will yield structurally sound multifunctional nanomaterials. The SWCNT network requires thorough dispersion within the polymer matrix in order to maximize the benefits of the nanomaterial. However, before any nanomaterials can be used in aerospace applications a means of quality assurance and quality control must be certified. Quality control certification requires a means of quantification, however, the measurement protocol mandates a method of seeing the dispersion first. We describe here the new tools that we have developed and implemented to first be able to see carbon nanotubes in polymers and second to measure or quantify the dispersion of the nanotubes

    De-scattering with excitation patterning in temporally-focused microscopy (DEEP- TFM)

    Get PDF
    Point-scanning two-photon microscopy is used routinely for in vivo, volumetric biological imaging, especially in deep tissues. Despite the excellent penetration depth, a conventional point-scanning two-photon microscopy is slow due to the need for raster scanning and imaging time scales linearly with increasing volume, hampering studies of fast biological dynamics. An attractive alternative to point-scanning geometries is wide-field two-photon microscopy, typically called temporal focusing microscopy (TFM) since optical sectioning is achieved by focusing a beam temporally while maintaining wide-field illumination. However, TFM suffers from scattering in tissue resulting in limited imaging depth. Please click Additional Files below to see the full abstract

    Direct Assembly of Modified Proteins on Carbon Nanotubes in an Aqueous Solution

    Get PDF
    Carbon nanotubes (CNTs) have superior mechanical and electrical properties that have opened up many potential applications. However, poor dispersibility and solubility, due to the substantial van der Waals attraction between tubes, have prevented the use of CNTs in practical applications, especially biotechnology applications. Effective dispersion of CNTs into small bundles or individual tubes in solvents is crucial to ensure homogeneous properties and enable practical applications. In addition to dispersion of CNTs into a solvent, the selection of appropriate solvent, which is compatible with a desired matrix, is an important factor to improve the mechanical, thermal, optical, and electrical properties of CNT-based fibers and composites. In particular, dispersion of CNTs into an aqueous system has been a challenge due to the hydrophobic nature of CNTs. Here we show an effective method for dispersion of both single wall CNTs (SWCNTs) and few wall CNTs (FWCNTs) in an aqueous buffer solution. We also show an assembly of cationized Pt-cored ferritins on the well dispersed CNTs in an aqueous buffer solution

    Reference-free polarization-sensitive quantitative phase imaging using single-point optical phase conjugation

    Get PDF
    We propose and experimentally demonstrate a method of polarization-sensitive quantitative phase imaging using two photodetectors and a digital micromirror device. Instead of recording wide-field interference patterns, finding the modulation patterns maximizing focused intensities in terms of the polarization states enables polarization-dependent quantitative phase imaging without the need for a reference beam and an image sensor. The feasibility of the present method is experimentally validated by reconstructing Jones matrices of several samples including a polystyrene microsphere, a maize starch granule, and a mouse retinal nerve fiber layer. Since the present method is simple and sufficiently general, we expect that it may offer solutions for quantitative phase imaging of birefringent materials

    Mechanically Strong, Thermally Stable, and Electrically Conductive Nanocomposite Structure and Method of Fabricating Same

    Get PDF
    A nanocomposite structure and method of fabricating same are provided. The nanocomposite structure is a polymer in an extruded shape with carbon nanotubes (CNTs) longitudinally disposed and dispersed in the extruded shape along a dimension thereof. The polymer is characteristically defined as having a viscosity of at least approximately 100,000 poise at a temperature of 200 C

    Aqueous solution dispersement of carbon nanotubes

    Get PDF
    Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group
    • …
    corecore