7,926 research outputs found

    Attosecond Control of Ionization Dynamics

    Get PDF
    Attosecond pulses can be used to initiate and control electron dynamics on a sub-femtosecond time scale. The first step in this process occurs when an atom absorbs an ultraviolet photon leading to the formation of an attosecond electron wave packet (EWP). Until now, attosecond pulses have been used to create free EWPs in the continuum, where they quickly disperse. In this paper we use a train of attosecond pulses, synchronized to an infrared (IR) laser field, to create a series of EWPs that are below the ionization threshold in helium. We show that the ionization probability then becomes a function of the delay between the IR and attosecond fields. Calculations that reproduce the experimental results demonstrate that this ionization control results from interference between transiently bound EWPs created by different pulses in the train. In this way, we are able to observe, for the first time, wave packet interference in a strongly driven atomic system.Comment: 8 pages, 4 figure

    The Ginzburg-Landau Free Energy Functional of Color Superconductivity at Weak Coupling

    Get PDF
    We derive the Ginzburg-Landau free energy functional of color superconductivity in terms of the thermal diagrams of QCD in its perturbative region. The zero mode of the quadratic term coefficient yields the same transition temperature, including the pre-exponential factor, as the one obtained previously from the Fredholm determinant of the two quark scattering amplitude. All coefficients of the free energy can be made identical to those of a BCS model by setting the Fermi velocity of the latter equal to the speed of light. We also calculate the induced symmetric color condensate near TcT_c and find that it scales as the cubic power of the dominant antisymmetric color component. We show that in the presence of an inhomogeneity and a nonzero gauge potential, while the color-flavor locked condensate dominates in the bulk, the unlocked condensate, the octet, emerges as a result of a simultaneous color-flavor rotation in the core region of a vortex filament or at the junction of super and normal phases.Comment: 32 pages, Plain Tex, 3 figure

    Neutrino processes in the K0K^0 condensed phase of color flavor locked quark matter

    Full text link
    We study weak interactions involving Goldstone bosons in the neutral kaon condensed phase of color flavor locked quark matter. We calculate the rates for the dominant processes that contribute to the neutrino mean free p ath and to neutrino production. A light K+K^+ state, with a mass m~K+∝(Δ/ÎŒ)(Δ/ms)(md−mu)\tilde{m}_{K^+} \propto (\Delta/\mu) (\Delta/m_s)(m_d-m_u), where ÎŒ\mu and Δ\Delta are the quark chemical potential and superconducting gap respectively, is shown to play an important role. We identify unique characteristics of weak interaction rates in this novel phase and discuss how they might influence neutrino emission in core collapse supernova and neutron stars.Comment: 21 pages, 4 figure

    Short distance current correlators: Comparing lattice simulations to the instanton liquid

    Get PDF
    Point to point correlators of currents are computed in quenched QCD using a chiral lattice fermion action, the overlap action. I compare correlators made of exact quark propagators with correlators restricted to low (less than 500 MeV) eigenvalue eigenmodes of the Dirac operator. In many cases they show qualitative resemblence (typically at small values of the quark mass and distances larger than 0.4 fm) and they differ qualitatively at larger quark masses or at very short distance. Lattice results are in qualitative agreement (and in the difference of vector and axial vector channels, quantitative agreement) with the expectations of instanton liquid models. The scalar channel shows the effects of a quenched finite volume zero mode artifact, a negative correlator.Comment: 18 pages, Revtex, 11 postscript figures. Some changes. Version to appear in Phys. Rev.

    Above threshold ionization by few-cycle spatially inhomogeneous fields

    Full text link
    We present theoretical studies of above threshold ionization (ATI) produced by spatially inhomogeneous fields. This kind of field appears as a result of the illumination of plasmonic nanostructures and metal nanoparticles with a short laser pulse. We use the time-dependent Schr\"odinger equation (TDSE) in reduced dimensions to understand and characterize the ATI features in these fields. It is demonstrated that the inhomogeneity of the laser electric field plays an important role in the ATI process and it produces appreciable modifications to the energy-resolved photoelectron spectra. In fact, our numerical simulations reveal that high energy electrons can be generated. Specifically, using a linear approximation for the spatial dependence of the enhanced plasmonic field and with a near infrared laser with intensities in the mid- 10^{14} W/cm^{2} range, we show it is possible to drive electrons with energies in the near-keV regime. Furthermore, we study how the carrier envelope phase influences the emission of ATI photoelectrons for few-cycle pulses. Our quantum mechanical calculations are supported by their classical counterparts

    Approach to the Continuum Limit of the Quenched Hermitian Wilson-Dirac Operator

    Get PDF
    We investigate the approach to the continuum limit of the spectrum of the Hermitian Wilson-Dirac operator in the supercritical mass region for pure gauge SU(2) and SU(3) backgrounds. For this we study the spectral flow of the Hermitian Wilson-Dirac operator in the range 0≀m≀20\le m\le 2. We find that the spectrum has a gap for 0<m≀m10 < m \le m_1 and that the spectral density at zero, ρ(0;m)\rho(0;m), is non-zero for m1≀m≀2m_1\le m\le 2. We find that m1→0m_1\to 0 and, for m≠0,ρ(0;m)→0m \ne 0, \rho(0;m)\to 0 (exponential in the lattice spacing) as one goes to the continuum limit. We also compute the topological susceptibility and the size distribution of the zero modes. The topological susceptibility scales well in the lattice spacing for both SU(2) and SU(3). The size distribution of the zero modes does not appear to show a peak at a physical scale.Comment: 19 pages revtex with 9 postscript figures included by eps

    Effects of maternal subnutrition during early pregnancy on cow hematological profiles and offspring physiology and vitality in two beef breeds

    Get PDF
    This experiment evaluated the effects of subnutrition during early gestation on hematology in cows (Bos Taurus) and on hematological, metabolic, endocrine, and vitality parameters in their calves. Parda de Montaña and Pirenaica dams were inseminated and assigned to either a control (CONTROL, 100% requirements) or a nutrient‐restricted group (SUBNUT, 65%) during the first third of gestation. Dam blood samples were collected on days 20 and 253 of gestation, and calf samples were obtained during the first days of life. Pirenaica dams presented higher red series parameters than Parda de Montaña dams, both in the first and the last months of gestation. During early pregnancy, granulocyte numbers and mean corpuscular hemoglobin were lower in Pirenaica‐SUBNUT than in Pirenaica‐CONTROL cows. Calves from the SUBNUT cows did not show a physiological reduction in red series values in early life, suggesting later maturation of the hematopoietic system. Poor maternal nutrition affected calf endocrine parameters. Newborns from dystocic parturitions showed lower NEFA concentrations and weaker vitality responses. In conclusion, maternal nutrition had short‐term effects on cow hematology, Pirenaica cows showing a higher susceptibility to undernutrition; and a long‐term effect on their offspring endocrinology, SUBNUT newborns showing lower levels of IGF‐1 and higher levels of cortisol.This work was supported by the Spanish Ministry of Economy and Business and the European Union Regional Development Funds (INIA RTA 2013‐00059‐C02 and INIA RZP 2015‐001) and the Government of Aragon under the Grant Research Group Funds (A14_17R). A. Noya received a PhD grant from INIA‐Government of Aragon

    Implications of the ALEPH tau-Lepton Decay Data for Perturbative and Non-Perturbative QCD

    Get PDF
    We use ALEPH data on hadronic τ\tau decays in order to calculate Euclidean coordinate space correlation functions in the vector and axial-vector channels. The linear combination V−AV-A receives no perturbative contribution and is quantitatively reproduced by the instanton liquid model. In the case of V+AV+A the instanton calculation is in good agreement with the data once perturbative corrections are included. These corrections clearly show the evolution of αs\alpha_s. We also analyze the range of validity of the Operator Product Expansion (OPE). In the V−AV-A channel we find a dimension d=6d=6 contribution which is comparable to the original SVZ estimate, but the instanton model provides a different non-singular term of the same magnitude. In the V+AV+A case both the OPE and the instanton model predict the same d=4d=4 power correction induced by the gluon condensate, but it is masked by much larger perturbative contributions. We conclude that the range of validity of the OPE is limited to x\lsim0.3 fm, whereas the instanton model describes the data over the entire range.Comment: 4 pages, 6 figure
    • 

    corecore