883 research outputs found

    The B∗BπB^*B\pi coupling with relativistic heavy quarks

    Full text link
    We report on a calculation of the B∗BπB^*B\pi coupling in lattice QCD. The strong matrix element ⟨Bπ∣B∗⟩\langle B \pi | B^*\rangle is directly related to the leading order low-energy constant in heavy meson chiral perturbation theory (HMχ\chiPT) for BB-mesons. We carry out our calculation directly at the bb-quark mass using a non-perturbatively tuned clover action that controls discretisation effects of order ∣p⃗a∣|\vec{p}a| and (ma)n(ma)^n for all nn. Our analysis is performed on RBC/UKQCD gauge configurations using domain wall fermions and the Iwasaki gauge action at two lattice spacings of a−1=1.73(3)a^{-1}=1.73(3) GeV, a−1=2.28(3)a^{-1}=2.28(3) GeV, and unitary pion masses down to 290 MeV. We achieve good statistical precision and control all systematic uncertainties, giving a final result for the HMχ\chiPT coupling gb=0.569(48)stat(59)sysg_b = 0.569(48)_{stat}(59)_{sys} in the continuum and at the physical light-quark masses. This is the first calculation performed directly at the physical bb-quark mass and lies in the region one would expect from carrying out an interpolation between previous results at the charm mass and at the static point.Comment: 7 pages, 2 figures, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German

    Visualization of semileptonic form factors from lattice QCD

    Full text link
    Comparisons of lattice-QCD calculations of semileptonic form factors with experimental measurements often display two sets of points, one each for lattice QCD and experiment. Here we propose to display the output of a lattice-QCD analysis as a curve and error band. This is justified, because lattice-QCD results rely in part on fitting, both for the chiral extrapolation and to extend lattice-QCD data over the full physically allowed kinematic domain. To display an error band, correlations in the fit parameters must be taken into account. For the statistical error, the correlation comes from the fit. To illustrate how to address correlations in the systematic errors, we use the Becirevic-Kaidalov parametrization of the D -> pi l nu and D -> K l nu form factors, and a analyticity-based fit for the B -> pi l nu form factor f_+.Comment: 6 pp; v2 conforms with published version (one additional sentence and reference to clarify a point

    Short-distance matrix elements for D0-meson mixing from Nf=2+1 lattice QCD

    Get PDF
    We calculate in three-flavor lattice QCD the short-distance hadronic matrix elements of all five ΔC=2 four-fermion operators that contribute to neutral D-meson mixing both in and beyond the Standard Model. We use the MILC Collaboration’s Nf=2+1 lattice gauge-field configurations generated with asqtad-improved staggered sea quarks. We also employ the asqtad action for the valence light quarks and use the clover action with the Fermilab interpretation for the charm quark. We analyze a large set of ensembles with pions as light as lattice gauge-field configurations generated with asqtad-improved staggered sea quarks. We also employ the asqtad action for the valence light quarks and use the clover action with the Fermilab interpretation for the charm quark. We analyze a large set of ensembles with pions as light as Mπ ≈ 180 MeV and lattice spacings as fine as a ≈ 0.045 fm, thereby enabling good control over the extrapolation to the physical pion mass and continuum limit. We obtain for the matrix elements in the MS−NDR scheme using the choice of evanescent operators proposed by Beneke et al., evaluated at 3 GeV, ⟨D0|Oi|¯D0⟩ = {0.0805(55)16),−0.1561(70)(31), 0.0464(31)(9), 0.2747(129)(55), 0.1035(71)(21)} GeV4 (i=1–5). The errors shown are from statistics and lattice systematics, and the omission of charmed sea quarks, respectively. To illustrate the utility of our matrix-element results, we place bounds on the scale of CP-violating new physics in D0 mixing, finding lower limits of about 10–50×103 TeV for couplings of O(1). To enable our results to be employed in more sophisticated or model-specific phenomenological studies, we provide the correlations among our matrix-element results. For convenience, we also present numerical results in the other commonly used scheme of Buras, Misiak, and Urban

    The OscSNS White Paper

    Full text link
    There exists a need to address and resolve the growing evidence for short-baseline neutrino oscillations and the possible existence of sterile neutrinos. Such non-standard particles require a mass of ∼1\sim 1 eV/c2^2, far above the mass scale associated with active neutrinos, and were first invoked to explain the LSND νˉμ→νˉe\bar \nu_\mu \rightarrow \bar \nu_e appearance signal. More recently, the MiniBooNE experiment has reported a 2.8σ2.8 \sigma excess of events in antineutrino mode consistent with neutrino oscillations and with the LSND antineutrino appearance signal. MiniBooNE also observed a 3.4σ3.4 \sigma excess of events in their neutrino mode data. Lower than expected neutrino-induced event rates using calibrated radioactive sources and nuclear reactors can also be explained by the existence of sterile neutrinos. Fits to the world's neutrino and antineutrino data are consistent with sterile neutrinos at this ∼1\sim 1 eV/c2^2 mass scale, although there is some tension between measurements from disappearance and appearance experiments. In addition to resolving this potential major extension of the Standard Model, the existence of sterile neutrinos will impact design and planning for all future neutrino experiments. It should be an extremely high priority to conclusively establish if such unexpected light sterile neutrinos exist. The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, built to usher in a new era in neutron research, provides a unique opportunity for US science to perform a definitive world-class search for sterile neutrinos.Comment: This white paper is submitted as part of the SNOWMASS planning proces
    • …
    corecore