1,417 research outputs found

    Spacetime perspective of Schwarzschild lensing

    Full text link
    We propose a definition of an exact lens equation without reference to a background spacetime, and construct the exact lens equation explicitly in the case of Schwarzschild spacetime. For the Schwarzschild case, we give exact expressions for the angular-diameter distance to the sources as well as for the magnification factor and time of arrival of the images. We compare the exact lens equation with the standard lens equation, derived under the thin-lens-weak-field assumption (where the light rays are geodesics of the background with sharp bending in the lens plane, and the gravitational field is weak), and verify the fact that the standard weak-field thin-lens equation is inadequate at small impact parameter. We show that the second-order correction to the weak-field thin-lens equation is inaccurate as well. Finally, we compare the exact lens equation with the recently proposed strong-field thin-lens equation, obtained under the assumption of straight paths but without the small angle approximation, i.e., with allowed large bending angles. We show that the strong-field thin-lens equation is remarkably accurate, even for lightrays that take several turns around the lens before reaching the observer.Comment: 22 pages, 6 figures, to appear in Phys. Rev.

    Fermat Potentials for Non-Perturbative Gravitational Lensing

    Full text link
    The images of many distant galaxies are displaced, distorted and often multiplied by the presence of foreground massive galaxies near the line of sight; the foreground galaxies act as gravitational lenses. Commonly, the lens equation, which relates the placement and distortion of the images to the real source position in the thin-lens scenario, is obtained by extremizing the time of arrival among all the null paths from the source to the observer (Fermat's principle). We show that the construction of envelopes of certain families of null surfaces consitutes an alternative variational principle or version of Fermat's principle that leads naturally to a lens equation in a generic spacetime with any given metric. We illustrate the construction by deriving the lens equation for static asymptotically flat thin lens spacetimes. As an application of the approach, we find the bending angle for moving thin lenses in terms of the bending angle for the same deflector at rest. Finally we apply this construction to cosmological spacetimes (FRW) by using the fact they are all conformally related to Minkowski space.Comment: accepted for publication in Phys. Rev.

    Continuous image distortion by astrophysical thick lenses

    Full text link
    Image distortion due to weak gravitational lensing is examined using a non-perturbative method of integrating the geodesic deviation and optical scalar equations along the null geodesics connecting the observer to a distant source. The method we develop continuously changes the shape of the pencil of rays from the source to the observer with no reference to lens planes in astrophysically relevant scenarios. We compare the projected area and the ratio of semi-major to semi-minor axes of the observed elliptical image shape for circular sources from the continuous, thick-lens method with the commonly assumed thin-lens approximation. We find that for truncated singular isothermal sphere and NFW models of realistic galaxy clusters, the commonly used thin-lens approximation is accurate to better than 1 part in 10^4 in predicting the image area and axes ratios. For asymmetric thick lenses consisting of two massive clusters separated along the line of sight in redshift up to \Delta z = 0.2, we find that modeling the image distortion as two clusters in a single lens plane does not produce relative errors in image area or axes ratio more than 0.5%Comment: accepted to GR

    Rossby waves in rapidly rotating Bose-Einstein condensates

    Full text link
    We predict and describe a new collective mode in rotating Bose-Einstein condensates, which is very similar to the Rossby waves in geophysics. In the regime of fast rotation, the Coriolis force dominates the dynamics and acts as a restoring force for acoustic-drift waves along the condensate. We derive a nonlinear equation that includes the effects of both the zero-point pressure and the anharmonicity of the trap. It is shown that such waves have negative phase speed, propagating in the opposite sense of the rotation. We discuss different equilibrium configurations and compare with those resulting from the Thomas-Fermi approximation.Comment: 4 pages, 2 figures (submitted to PRL

    Iterative Approach to Gravitational Lensing Theory

    Full text link
    We develop an iterative approach to gravitational lensing theory based on approximate solutions of the null geodesic equations. The approach can be employed in any space-time which is ``close'' to a space-time in which the null geodesic equations can be completely integrated, such as Minkowski space-time, Robertson-Walker cosmologies, or Schwarzschild-Kerr geometries. To illustrate the method, we construct the iterative gravitational lens equations and time of arrival equation for a single Schwarzschild lens. This example motivates a discussion of the relationship between the iterative approach, the standard thin lens formulation, and an exact formulation of gravitational lensing.Comment: 27 pages, 2 figures, submitted to Phys.Rev.D, minor revisions, new reference

    Null Cones in Schwarzschild Geometry

    Get PDF
    Light cones of Schwarzschild geometry are studied in connection to the Null Surface Formulation and gravitational lensing. The paper studies the light cone cut function's singularity structure, gives exact gravitational lensing equations, and shows that the "pseudo-Minkowski" coordinates are well defined within the model considered.Comment: 31 pages, 5 figure

    Image distortion in non perturbative gravitational lensing

    Get PDF
    We introduce the idea of {\it shape parameters} to describe the shape of the pencil of rays connecting an observer with a source lying on his past lightcone. On the basis of these shape parameters, we discuss a setting of image distortion in a generic (exact) spacetime, in the form of three {\it distortion parameters}. The fundamental tool in our discussion is the use of geodesic deviation fields along a null geodesic to study how source shapes are propagated and distorted on the path to an observer. We illustrate this non-perturbative treatment of image distortion in the case of lensing by a Schwarzschild black hole. We conclude by showing that there is a non-perturbative generalization of the use of Fermat's principle in lensing in the thin-lens approximation.Comment: 22 pages, 6 figures, to appear in Phys. Rev. D (January 2001

    A Cellular Automaton Model for Diffusive and Dissipative Systems

    Get PDF
    We study a cellular automaton model, which allows diffusion of energy (or equivalently any other physical quantities such as mass of a particular compound) at every lattice site after each timestep. Unit amount of energy is randomly added onto a site. Whenever the local energy content of a site reaches a fixed threshold Ec1E_{c1}, energy will be dissipated. Dissipation of energy propagates to the neighboring sites provided that the energy contents of those sites are greater than or equal to another fixed threshold Ec2(≤Ec1)E_{c2} (\leq E_{c1}). Under such dynamics, the system evolves into three different types of states depending on the values of Ec1E_{c1} and Ec2E_{c2} as reflected in their dissipation size distributions, namely: localized peaks, power laws, or exponential laws. This model is able to describe the behaviors of various physical systems including the statistics of burst sizes and burst rates in type-I X-ray bursters. Comparisons between our model and the famous forest-fire model (FFM) are made.Comment: in REVTEX 3.0. Figures available on request. Extensively revised. Accepted by Phys.Rev.
    • …
    corecore