609 research outputs found

    High-fidelity quantum logic gates using trapped-ion hyperfine qubits

    Full text link
    We demonstrate laser-driven two-qubit and single-qubit logic gates with fidelities 99.9(1)% and 99.9934(3)% respectively, significantly above the approximately 99% minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a room-temperature trap. We study the speed/fidelity trade-off for the two-qubit gate, for gate times between 3.8μ\mus and 520μ\mus, and develop a theoretical error model which is consistent with the data and which allows us to identify the principal technical sources of infidelity.Comment: 1 trap, 2 ions, 3 nines. Detailed write-up of arXiv:1406.5473 including single-qubit gate data als

    High-fidelity trapped-ion quantum logic using near-field microwaves

    Full text link
    We demonstrate a two-qubit logic gate driven by near-field microwaves in a room-temperature microfabricated ion trap. We measure a gate fidelity of 99.7(1)\%, which is above the minimum threshold required for fault-tolerant quantum computing. The gate is applied directly to 43^{43}Ca+^+ "atomic clock" qubits (coherence time T250sT_2^*\approx 50\,\mathrm{s}) using the microwave magnetic field gradient produced by a trap electrode. We introduce a dynamically-decoupled gate method, which stabilizes the qubits against fluctuating a.c.\ Zeeman shifts and avoids the need to null the microwave field

    Microwave control electrodes for scalable, parallel, single-qubit operations in a surface-electrode ion trap

    Full text link
    We propose a surface ion trap design incorporating microwave control electrodes for near-field single-qubit control. The electrodes are arranged so as to provide arbitrary frequency, amplitude and polarization control of the microwave field in one trap zone, while a similar set of electrodes is used to null the residual microwave field in a neighbouring zone. The geometry is chosen to reduce the residual field to the 0.5% level without nulling fields; with nulling, the crosstalk may be kept close to the 0.01% level for realistic microwave amplitude and phase drift. Using standard photolithography and electroplating techniques, we have fabricated a proof-of-principle electrode array with two trapping zones. We discuss requirements for the microwave drive system and prospects for scalability to a large two-dimensional trap array.Comment: 8 pages, 6 figure

    Viral Infection Results in Massive CD8+ T Cell Expansion and Mortality in Vaccinated Perforin-Deficient Mice

    Get PDF
    AbstractPerforin-mediated cytotoxicity is essential for clearance of primary LCMV infection. BALB/c-perforin-deficient (PKO) mice survived LCMV infection by deleting NP118-specific CD8+ T cells whereas vaccination of PKO mice with Listeria expressing NP118 generated a stable memory CD8+ T cell population. However, >85% of vaccinated BALB/c-PKO mice died after LCMV infection. Mortality was associated with enormous expansion of NP118-specific CD8+ T cells in both lymphoid and nonlymphoid tissues and aberrant CD8+ T cell cytokine production. Depletion of CD8+ T cells or treatment with anti-IFNγ antibody rescued vaccinated mice from mortality. Thus, perforin was essential for resistance to secondary LCMV infection, and, in the absence of perforin, vaccination resulted in lethal disease mediated by dysregulated CD8+ T cell expansion and cytokine production

    A microfabricated ion trap with integrated microwave circuitry

    Full text link
    We describe the design, fabrication and testing of a surface-electrode ion trap, which incorporates microwave waveguides, resonators and coupling elements for the manipulation of trapped ion qubits using near-field microwaves. The trap is optimised to give a large microwave field gradient to allow state-dependent manipulation of the ions' motional degrees of freedom, the key to multiqubit entanglement. The microwave field near the centre of the trap is characterised by driving hyperfine transitions in a single laser-cooled 43Ca+ ion.Comment: 4 pages, 5 figure

    Differential Role of “Signal 3” Inflammatory Cytokines in Regulating CD8 T Cell Expansion and Differentiation in vivo

    Get PDF
    Following an infection, naïve CD8 T cells are stimulated by dendritic cells (DC) displaying pathogen-derived peptides on MHC class I molecules (signal 1) and costimulatory molecules (signal 2). Additionally, pathogen-induced inflammatory cytokines also act directly on the responding CD8 T cells to regulate their expansion and differentiation. In particular, both type I interferons (IFNs) and IL-12 have been described as critical survival signals (signal 3) for optimal CD8 T cell accumulation during the expansion phase. Furthermore, expansion in numbers of antigen-specific CD8 T cells is coupled with their acquisition of effector functions to combat the infection. However, it still remains unclear whether these same cytokines also regulate the effector/memory differentiation program of the CD8 T cell response in vivo. Here, we demonstrate that defective signaling by either type I IFNs or IL-12 to the responding CD8 T cells impairs maximal expansion in response to DC immunization + CpG ODN, but neither of these cytokines is essential to regulate the effector/memory differentiation program. In addition, lack of direct IL-12 signaling to CD8 T cells accelerates the development of central memory phenotype in both primary and secondary antigen-specific memory CD8 T cells

    Magnetic field stabilization system for atomic physics experiments

    Full text link
    Atomic physics experiments commonly use millitesla-scale magnetic fields to provide a quantization axis. As atomic transition frequencies depend on the amplitude of this field, many experiments require a stable absolute field. Most setups use electromagnets, which require a power supply stability not usually met by commercially available units. We demonstrate stabilization of a field of 14.6 mT to 4.3 nT rms noise (0.29 ppm), compared to noise of \gtrsim 100 nT without any stabilization. The rms noise is measured using a field-dependent hyperfine transition in a single 43^{43}Ca+^+ ion held in a Paul trap at the centre of the magnetic field coils. For the 43^{43}Ca+^+ "atomic clock" qubit transition at 14.6 mT, which depends on the field only in second order, this would yield a projected coherence time of many hours. Our system consists of a feedback loop and a feedforward circuit that control the current through the field coils and could easily be adapted to other field amplitudes, making it suitable for other applications such as neutral atom traps.Comment: 6 pages, 5 figure

    High-fidelity preparation, gates, memory and readout of a trapped-ion quantum bit

    Full text link
    We implement all single-qubit operations with fidelities significantly above the minimum threshold required for fault-tolerant quantum computing, using a trapped-ion qubit stored in hyperfine "atomic clock" states of 43^{43}Ca+^+. We measure a combined qubit state preparation and single-shot readout fidelity of 99.93%, a memory coherence time of T2=50T^*_2=50 seconds, and an average single-qubit gate fidelity of 99.9999%. These results are achieved in a room-temperature microfabricated surface trap, without the use of magnetic field shielding or dynamic decoupling techniques to overcome technical noise.Comment: Supplementary Information included. 6 nines, 7 figures, 8 page
    corecore