153 research outputs found

    New insight into the effects of lead modulation on antioxidant defense mechanism and trace element concentration in rat bone

    Get PDF
    Risks of heavy metals-induced severe bone disorders generate interest to their toxicity. The present study was undertaken to monitor the biochemical and antioxidant status of bone of 30 and 80 days old male Wistar rats exposed to 5 week lead treatment. At the end of study, the rats were sacrificed, their long bone i.e. femur were excised, cleaned of soft tissue, minced and homogenized. Nucleic acid content, alkaline phosphatase, lipid peroxidation, catalase, glutathione S-transferase and superoxide dismutase were determined in bone. In both groups of treated animals lead treatment increased the production of malondialdehyde, while reducing activities of catalase, glutathione S-transferase and superoxide dismutase, indicating that it causes oxidative stress. Parallely with these effects lead significantly reduced the nucleic acid content and the activity of alkaline phosphatase, considered as biomarkers of osteoblast's function, conditions and development of bones. Moreover the concentrations of copper, zinc, iron and sodium were reduced in the excised bones. The present study indicates that the lead induced bone toxicity and its deteriorated development is the consequence of a primary oxidative stress. Our results may be helpful in understanding the modulation of biochemical parameters under lead toxicity

    Drought Impact Is Alleviated in Sugar Beets (Beta vulgaris L.) by Foliar Application of Fullerenol Nanoparticles

    Get PDF
    Over the past few years, significant efforts have been made to decrease the effects of drought stress on plant productivity and quality. We propose that fullerenol nanoparticles (FNPs, molecular formula C-60(OH)(24)) may help alleviate drought stress by serving as an additional intercellular water supply. Specifically, FNPs are able to penetrate plant leaf and root tissues, where they bind water in various cell compartments. This hydroscopic activity suggests that FNPs could be beneficial in plants. The aim of the present study was to analyse the influence of FNPs on sugar beet plants exposed to drought stress. Our results indicate that intracellular water metabolism can be modified by foliar application of FNPs in drought exposed plants. Drought stress induced a significant increase in the compatible osmolyte proline in both the leaves and roots of control plants, but not in FNP treated plants. These results indicate that FNPs could act as intracellular binders of water, creating an additional water reserve, and enabling adaptation to drought stress. Moreover, analysis of plant antioxidant enzyme activities (CAT, APx and GPx), MDA and GSH content indicate that fullerenol foliar application could have some beneficial effect on alleviating oxidative effects of drought stress, depending on the concentration of nanoparticles applied. Although further studies are necessary to elucidate the biochemical impact of FNPs on plants; the present results could directly impact agricultural practice, where available water supplies are often a limiting factor in plant bioproductivity

    Human cathepsin D.

    Full text link

    Immune system and antioxidants, especially those derived from Indian medicinal plants

    No full text
    639-655<span style="font-size: 14.5pt;mso-bidi-font-size:8.5pt;font-family:" times="" new="" roman","serif""="">During the functioning of the immune system, such as in phagocytosis, reactive oxygen and nitrogen species are generated. <span style="font-size: 14.5pt;mso-bidi-font-size:8.5pt;font-family:" times="" new="" roman","serif""="">If they are left unchecked they can affect the components of the immune system by inducing oxidative damage. This is more so in the elderly or during inflammation where there is excess generation of these reactive species than can be taken care of by the defenses in the form of antioxidants. Dietary supplementation with antioxidants may greatly help in such conditions. <span style="font-size: 14.5pt;mso-bidi-font-size:8.5pt;font-family:" times="" new="" roman","serif""="">There are some indications of possible benefits of antioxidant supplementation. Natural compounds from medicinal plants having antioxidant and immunomodulatory activities have potential as therapeutic agents in this regard. Indian medicinal plants with these activities have been identified and their antioxidant and immunomodulatory effects reviewed. The possible future prospects in this regard are also outlined. </span

    Methods for estimating lipid peroxidation: An analysis of merits and demerits

    No full text
    300-308Among the cellular molecules, lipids that contain unsaturated fatty acids with more than one double bond are particularly susceptible to action of free radicals. The resulting reaction, known as lipid peroxidation, disrupts biological membranes and is thereby highly deleterious to their structure and function. Lipid peroxidation is being studied extensively in relation to disease, modulation by antioxidants and other contexts. A large number of by-products are formed during this process. These can be measured by different assays. The most common method used is the estimation of aldehydic products by their ability to react with thiobarbituric acid (TBA) that yield ‘thiobarbituric acid reactive substances’ (TBARS), which can be easily measured by spectrophotometry. Though this assay is sensitive and widely used, it is not specific and TBA reacts with a number of components present in biological samples. Hence caution should be used while employing this method. Wherever possible this assay should be combined with other assays for lipid peroxidation. Such methods are measurement of conjugated dienes, lipid hydroperoxides, individual aldehydes, exhaled gases like pentane, isoprostanes, etc. The modern methods also involve newer techniques involving HPLC, spectrofluorimetry, mass spectrometry, chemiluminescence etc. These and other modern methods are more specific and can be applied to measure lipid peroxidation. There are certain restraints, in terms of high cost and certain artifacts, and these should be considered while selecting the method for estimation. This review analyses the merits and demerits of various assays to measure lipid peroxidation

    Free radical reactions of a naturally occurring flavone baicalein and possible mechanisms towards its membrane protective properties

    No full text
    275-282Baicalein (5, 6, 7-trihydroxy-2-phenyl-4H-1-benzopyran-4-one), a naturally occurring flavone present in some of the medicinal plants is known for its potential therapeutic effects, such as cardioprotective, anticancer and anti-inflammatory properties. However, detailed role and mechanisms behind its protective properties against different generators for oxidative stress have not been examined. In the present study, we investigated the possible protective ability of baicalein against the membrane damage caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS) and the mechanisms involved using pulse radiolysis technique. Baicalein offered efficient protection even at a concentration of 10 M towards membrane damage caused by lipid peroxidation induced by the -radiation, peroxyl radicals, ascorbate-Fe2+ and peroxynitrite in rat liver mitochondria and heart homogenate. To elucidate its reaction mechanisms with biologically relevant radicals, transient absorption spectroscopy employing pulse radiolysis technique was used. Baicalein showed fairly high rate constants (3.7 × 109, 1.3 × 109 and 8.0 × 108 dm3 mol-1 s-1 for hydroxyl, azidyl and alkylchloroperoxyl radicals, respectively), suggesting that baicalein can act as an effective scavenger of these radicals. In each case, the phenoxyl radical of baicalein was generated. Thus, it was evident that the phenolic moiety of baicalein was responsible for the free radical scavenging process. Baicalein also reacts with linoleic acid peroxyl radical (LOO·), indicating its ability to act as a chain breaking antioxidant. Peroxynitrite-mediated radicals were shown to be reactive towards baicalein and the bimolecular rate constants were 2.5 × 107 and 3 × 108 dm3 mol-1 s-1 for ·NO2 and CO3·- radicals, respectively. In conclusion, our results revealed the potential of baicalein in protecting mitochondrial membrane against oxidative damage induced by the four different agents. We propose that the protective effect is mediated via scavenging of primary and secondary radicals generated during oxidative stress

    Hsp90 mediates activation of the heme regulated eIF-2<img src='/image/spc_char/alpha.gif' border=0> kinase during oxidative stress

    No full text
    67-74The heme-regulated inhibitor (HRI), a member of the eIF-2 kinase family is crucial for regulating protein synthesis during stress. In addition to heme, stress proteins Hsp90 and Hsp70 are known to regulate HRI. The present study aims to determine the physical association of these Hsps in the regulation of HRI activation during oxidative stress using human K562 cells as a model. Extracts from the stress-induced cells were used for determining HRI kinase activity by measuring eIF-2 phosphorylation, and Hsp-HRI interaction by immunoprecipitation and immunoblot analyses. The results indicate a significant increase in both Hsp70 and Hsp90 expression during AAPH (2, 2’-azobis (2-amidinopropane) dihydrochloride)-induced oxidative stress. Further, their interaction with HRI, which correlates well with its increased HRI kinase activity leads to inhibition of protein synthesis. Thus, we demonstrate that Hsps play an important role in the regulation of initiation of protein synthesis during oxidative stress.</b
    corecore