3 research outputs found

    The oxidized linoleic acid metabolite 12,13-DiHOME mediates thermal hyperalgesia during inflammatory pain

    No full text
    Eicosanoids play a crucial role in inflammatory pain. However, there is very little knowledge about the contribution of oxidized linoleic acid metabolites in inflammatory pain and peripheral sensitization. Here, we identify 12,13-dihydroxy-9Z-octadecenoic acid (12,13-DiHOME), a cytochrome P450-derived linoleic acid metabolite, as crucial mediator of thermal hyperalgesia during inflammatory pain. We found 12,13-DiHOME in increased concentrations in peripheral nervous tissue during acute zymosan- and complete Freund's Adjuvant-induced inflammatory pain. 12,13-DiHOME causes calcium transients in sensory neurons and sensitizes the transient receptor potential vanilloid 1 (TRPV1)-mediated intracellular calcium increases via protein kinase C, subsequently leading to enhanced TRPV1-dependent CGRP-release from sensory neurons. Peripheral injection of 12,13-DiHOME in vivo causes TRPV1-dependent thermal pain hypersensitivity. Finally, application of the soluble epoxide hydrolase (sEH)-inhibitor TPPU reduces 12,13-DiHOME concentrations in nervous tissue and reduces zymosan- and CFA-induced thermal hyperalgesia in vivo. In conclusion, we identify a novel role for the lipid mediator 12,13-DiHOME in mediating thermal hyperalgesia during inflammatory pain and propose a novel mechanism that may explain the antihyperalgesic effects of sEH inhibitors in vivo

    SYNTHESIS OF TISSUE INHIBITOR OF METALLOPROTEINASE-1 (TIMP-1) IN HUMAN HEPATOMA-CELLS (HEPG2) - UP-REGULATION BY INTERLEUKIN-6 AND TRANSFORMING GROWTH FACTOR-BETA-1

    No full text
    KORDULA T, GUTTGEMANN I, ROSEJOHN S, et al. SYNTHESIS OF TISSUE INHIBITOR OF METALLOPROTEINASE-1 (TIMP-1) IN HUMAN HEPATOMA-CELLS (HEPG2) - UP-REGULATION BY INTERLEUKIN-6 AND TRANSFORMING GROWTH FACTOR-BETA-1. FEBS LETTERS. 1992;313(2):143-147.Metalloproteinases and their specific inhibitors, believed to play a role in extracellular matrix metabolism, are regulated by inflammatory cytokines. Here we have addressed the question of whether liver, the major site of synthesis of plasma proteinase inhibitors, is also capable of synthesizing the tissue inhibitor of metalloproteinase-1 (TIMP-1). We show at mRNA and protein levels that TIMP-1 is expressed in differentiated human hepatoma cells (HepG2) and that its synthesis is up-regulated by interleukin-6 (IL-6), transforming growth factor beta1 and phorbol 12-myristate 13-acetate. The physiological role of this phenomenon is underlined by the fact that lipopolysaccharide administration into rats in vivo, as well as IL-6-stimulation of rat hepatocytes in primary culture, also leads to an increase of TIMP-1 mRNA in liver cells

    Chemical Equilibrium

    No full text
    corecore