6,178 research outputs found
Ontology modelling methodology for temporal and interdependent applications
The increasing adoption of Semantic Web technology by several classes of applications in recent years, has made ontology engineering a crucial part of application development. Nowadays, the abundant accessibility of interdependent information from multiple resources and representing various fields such as health, transport, and banking etc., further evidence the growing need for utilising ontology for the development of Web applications. While there have been several advances in the adoption of the ontology for application development, less emphasis is being made on the modelling methodologies for representing modern-day application that are characterised by the temporal nature of the data they process, which is captured from multiple sources. Taking into account the benefits of a methodology in the system development, we propose a novel methodology for modelling ontologies representing Context-Aware Temporal and Interdependent Systems (CATIS). CATIS is an ontology development methodology for modelling temporal interdependent applications in order to achieve the desired results when modelling sophisticated applications with temporal and inter dependent attributes to suit today's application requirements
FADI: a fault-tolerant environment for open distributed computing
FADI is a complete programming environment that serves the reliable execution of distributed application programs. FADI encompasses all aspects of modern fault-tolerant distributed computing. The built-in user-transparent error detection mechanism covers processor node crashes and hardware transient failures. The mechanism also integrates user-assisted error checks into the system failure model. The nucleus non-blocking checkpointing mechanism combined with a novel selective message logging technique delivers an efficient, low-overhead backup and recovery mechanism for distributed processes. FADI also provides means for remote automatic process allocation on the distributed system nodes
Managing contextual information in semantically-driven temporal information systems
Context-aware (CA) systems have demonstrated the provision of a robust solution for personalized information delivery in the current content-rich and dynamic information age we live in. They allow software agents to autonomously interact with users by modeling the user’s environment (e.g. profile, location, relevant public information etc.) as dynamically-evolving and interoperable contexts. There is a flurry of research activities in a wide spectrum at context-aware research areas such as managing the user’s profile, context acquisition from external environments, context storage, context representation and interpretation, context service delivery and matching of context attributes to users‘ queries etc. We propose SDCAS, a Semantic-Driven Context Aware System that facilitates public services recommendation to users at temporal location. This paper focuses on information management and service recommendation using semantic technologies, taking into account the challenges of relationship complexity in temporal and contextual information
Risk assessment for the installation and maintenance activities of a low-speed tidal energy converter
The study presented in this paper, is part of the Deep Green project, which includes the development of a power converter/device for employment in low-speed tidal currents. It mainly focuses on the initial steps to investigate the ways on how to minimize the risks during handling, operation and maintenance (O&M) activities of the full-scale device particularly in offshore operations. As a first tep, the full-scale device offshore installation and O&M tasks are considered. The overall risk analysis and decision making methodology is presented including the Hazard Identification (HAZID) approach which is complemented with a risk matrix for various consequence categories including personnel Safety (S), Environmental impact (E), Asset integrity (A) and Operation (O). In this way, all the major risks involved in the mentioned activities are identified and actions to prevent or mitigate them are presented. The results of the HAZID analysis are also demonstrated. Finally, the last section of this paper presents the discussion, conclusions and future actions for the above-mentioned activities regarding the full-scale device
Modelling trust in semantic web applications
This paper examines some of the barriers to the adoption of car-sharing, termed carpooling in the US, and develops a framework for trusted recommendations. The framework is established on a semantic modelling approach putting forward its suitability to resolving adoption barriers while also highlighting the characteristics of trust that can be exploited. Identification is made of potential vocabularies, ontologies and public social networks which can be used as the basis for deriving direct and indirect trust values in an implementation
An approach to rollback recovery of collaborating mobile agents
Fault-tolerance is one of the main problems that must be resolved to improve the adoption of the agents' computing paradigm. In this paper, we analyse the execution model of agent platforms and the significance of the faults affecting their constituent components on the reliable execution of agent-based applications, in order to develop a pragmatic framework for agent systems fault-tolerance. The developed framework deploys a communication-pairs independent check pointing strategy to offer a low-cost, application-transparent model for reliable agent- based computing that covers all possible faults that might invalidate reliable agent execution, migration and communication and maintains the exactly-one execution property
Investigating the use of semantic technologies in spatial mapping applications
Semantic Web Technologies are ideally suited to build context-aware information retrieval applications. However, the geospatial aspect of context awareness presents unique challenges such as the semantic modelling of geographical references for efficient handling of spatial queries, the reconciliation of the heterogeneity at the semantic and geo-representation levels, maintaining the quality of service and scalability of communicating, and the efficient rendering of the spatial queries' results. In this paper, we describe the modelling decisions taken to solve these challenges by analysing our implementation of an intelligent planning and recommendation tool that provides location-aware advice for a specific application domain. This paper contributes to the methodology of integrating heterogeneous geo-referenced data into semantic knowledgebases, and also proposes mechanisms for efficient spatial interrogation of the semantic knowledgebase and optimising the rendering of the dynamically retrieved context-relevant information on a web frontend
Utilising semantic technologies for decision support in dementia care
The main objective of this work is to discuss our experience in utilising semantic technologies for building decision support in Dementia care systems that are based on the non-intrusive on the non-intrusive monitoring of the patient’s behaviour. Our approach adopts context-aware modelling of the patient’s condition to facilitate the analysis of the patient’s behaviour within the inhabited environment (movement and room occupancy patterns, use of equipment, etc.) with reference to the semantic knowledge about the patient’s condition (history of present of illness, dependable behaviour patterns, etc.). The reported work especially focuses on the critical role of the semantic reasoning engine in inferring medical advice, and by means of practical experimentation and critical analysis suggests important findings related to the methodology of deploying the appropriate semantic rules systems, and the dynamics of the efficient utilisation of complex event processing technology in order to the meet the requirements of decision support for remote healthcare systems
Semantic-based decision support for remote care of dementia patients
This paper investigates the challenges in developing a semantic-based Dementia Care Decision Support System based on the non-intrusive monitoring of the patient's behaviour. Semantic-based approaches are well suited for modelling context-aware scenarios similar to Dementia care systems, where the patient's dynamic behaviour observations (occupants movement, equipment use) need to be analysed against the semantic knowledge about the patient's condition (illness history, medical advice, known symptoms) in an integrated knowledgebase. However, our research findings establish that the ability of semantic technologies to reason upon the complex interrelated events emanating from the behaviour monitoring sensors to infer knowledge assisting medical advice represents a major challenge. We attempt to address this problem by introducing a new approach that relies on propositional calculus modelling to segregate complex events that are amenable for semantic reasoning from events that require pre-processing outside the semantic engine before they can be reasoned upon. The event pre-processing activity also controls the timing of triggering the reasoning process in order to further improve the efficiency of the inference process. Using regression analysis, we evaluate the response-time as the number of monitored patients increases and conclude that the incurred overhead on the response time of the prototype decision support systems remains tolerable
Recommended from our members
Echo state network for occupancy prediction and pattern mining in intelligent environment
Pattern analysis and prediction of sensory data is becoming an increasing scientific challenge and a massive economical interest supports the need for better pattern mining techniques. The aim of this paper is to investigate efficient mining of useful information from a sensor network representing an ambient intelligence environment. The goal is to extract and predict behavioral patterns of a person in his/her daily activities by analyzing the time series data representing the behaviour of the occupant, generated using occupancy sensors. There are various techniques available for analysis and prediction of a continuous time series signal. However, the occupancy signal is represented by a binary time series where only discrete values of a signal are available. To build the prediction model, recurrent neural networks are investigated. They are proven to be useful tools to solve the difficulties of the temporal relationships of inputs between observations at different time steps, by maintaining internal states that have memory. In this paper, a special form of recurrent neural network, the so-called Echo State Network (ESN) is used in which discrete values of time series can be well processed. Then, a model developed based on ESN is compared with the most popular recurrent neural net-works; namely Back Propagation Through Time (BPTT) and Real Time Recurrent Learning (RTRL). The results showed that ESN provides better prediction results compared with BPTT and RTRL. Using ESN, large datasets are learnt in only few minutes or even seconds. It can be concluded that ESN are efficient and valuable tools in binary time series prediction. The results presented in this paper are based on simulated data generated from a simulator representing a person in a 1 bedroom flat
- …