18,273 research outputs found

    Intrinsic double-peak structure of the specific heat in low-dimensional quantum ferrimagnets

    Full text link
    Motivated by recent magnetic measurements on A3Cu3(PO4)4 (A=Ca,Sr) and Cu(3-Clpy)2(N3)2 (3-Clpy=3-Chloropyridine), both of which behave like one-dimensional ferrimagnets, we extensively investigate the ferrimagnetic specific heat with particular emphasis on its double-peak structure. Developing a modified spin-wave theory, we reveal that ferromagnetic and antiferromagnetic dual features of ferrimagnets may potentially induce an extra low-temperature peak as well as a Schottky-type peak at mid temperatures in the specific heat.Comment: 5 pages, 6 figures embedded, Phys. Rev. B 65, 214418 (2002

    Measurement by FIB on the ISS: Two Emissions of Solar Neutrons Detected?

    Get PDF
    A new type of solar neutron detector (FIB) was launched onboard the Space Shuttle Endeavour on July 16, 2009, and it began collecting data at the International Space Station (ISS) on August 25, 2009. This paper summarizes the three years of observations obtained by the solar neutron detector FIB until the end of July 2012. The solar neutron detector FIB can determine both the energy and arrival direction of neutrons. We measured the energy spectra of background neutrons over the SAA region and elsewhere, and found the typical trigger rates to be 20 counts/sec and 0.22 counts/sec, respectively. It is possible to identify solar neutrons to within a level of 0.028 counts/sec, provided that directional information is applied. Solar neutrons were observed in association with the M-class solar flares that occurred on March 7 (M3.7) and June 7 (M2.5) of 2011. This marked the first time that neutrons were observed in M-class solar flares. A possible interpretaion of the prodcution process is provided.Comment: 36 pages, 16 figures, and 3 Tables; Advanced in Astronmy, 2012, Special issue on Cosmic Ray Variablity:Century of Its Obseravtion

    Ground State Property of an Alternating Spin Ladder Involving Two Kinds of Inter-Chain Interactions

    Full text link
    The ground state property of the alternating spin ladder is studied in the case that the system involves an antiferromagnetic intra-chain interaction as well as two kinds of inter-chain interactions; one is between spins of the same magnitude and the other is between spins with different magnitudes. The calculation has been carried out by the exact diagonalization method. As a consequence of the competition among interactions, the system is revealed to show an interesting variety of phases in the ground state property. Its phase diagram is exhibited in the parameter space of the system. We find that, however small the total amount of the inter-chain interactions is, the ferrimagnetic ground state becomes unstable in a certain region. In this case, which of the ferrimagnetic and the singlet ground state to appear is determined only by the ratio between the inter-chain interactions regardless of their total amount. The nature of two phases appearing in the singlet region of the phase diagram and the type of the phase transition between them are also discussed. The results are ensured by comparing with those of obtained in other models which are contained in our model as special limiting cases.Comment: 12 pages, 9 PostScript figure

    Quantum noise in the Josephson charge qubit

    Full text link
    We study decoherence of the Josephson charge qubit by measuring energy relaxation and dephasing with help of the single-shot readout. We found that the dominant energy relaxation process is a spontaneous emission induced by quantum noise coupled to the charge degree of freedom. Spectral density of the noise at high frequencies is roughly proportional to the qubit excitation energy.Comment: Submitted to Phys. Rev. Letter

    Parity effect in superconducting aluminum single electron transistors with spatial gap profile controlled by film thickness

    Full text link
    We propose a novel method for suppression of quasiparticle poisoning in Al Coulomb blockade devices. The method is based on creation of a proper energy gap profile along the device. In contrast to the previously used techniques, the energy gap is controlled by the film thickness. Our transport measurements confirm that the quasiparticle poisoning is suppressed and clear 2ee periodicity is observed only when the island is made much thinner than the leads. This result is consistent with the existing model and provides a simple method to suppress quasiparticle poisoning

    The competitive effect of adenosine-5'-triphosphate against the stimulating and inhibiting actions of 2,4-dinitrophenol on the mitochondrial respiration

    Get PDF
    Effect of ATP and substrates on 2,4-dinitrophenol-induced adenosine triphcsphatase (E. C. 3.6. 1. 4.) activity and respiration of isolated rat liver mitochondria has been investigated. 1. The oxidation of sodium succinate inhibited the action of 2, 4-DNP on the induction of adenosine triphosphatase activity in the mitochondria. 2. A moderately large amount of sodium succinate restored the suppressed mitochondrial respiration due to 2, 4-DNP. 3. Adenosine-5'-triphosphate (ATP) restored quantitatively the released and inhibited mitochondrial respiration due to 2,4-DNP, and its prior addition prevented also quantitatively the action of 2,4-DNP on the mitochondrial oxygen up-take. These ATP effects were oligomycin sensitive, and they were considered to manifest their actions through the phosphorylation system.</p

    Low-Temperature Properties of Quasi-One-Dimensional Molecule-Based Ferromagnets

    Full text link
    Quantum and thermal behaviors of low-dimensional mixed-spin systems are investigated with particular emphasis on the design of molecule-based ferromagnets. One can obtain a molecular ferromagnet by assembling molecular bricks so as to construct a low-dimensional system with a magnetic ground state and then coupling the chains or the layers again in a ferromagnetic fashion. Two of thus-constructed quasi-one-dimensional bimetallic compounds are qualitatively viewed within the spin-wave treatment, one of which successfully grows into a bulk magnet, while the other of which ends in a singlet ground state. Then, concentrating on the ferrimagnetic arrangement on a two-leg ladder which is well indicative of general coupled-chain ferrimagnets, we develop the spin-wave theory and fully reveal its low-energy structure. We inquire further into the ferromagnetic aspect of the ferrimagnetic ladder numerically calculating the sublattice magnetization and the magnetic susceptibility. There exists a moderate coupling strength between the chains in order to obtain the most ferromagnetic ferrimagnet.Comment: 10 pages, 7 figures embedded, to be published in J. Phys. Soc. Jpn. Vol.70, No.5 (2001
    • …
    corecore