48 research outputs found

    Charged spin 1/2 particle in an arbitrary magnetic field in two spatial dimensions: a supersymmetric quantum mechanical system

    Get PDF
    It is shown that the 2 X 2 matrix Hamiltonian describing the dynamics of a charged spin 1/2 particle with g-factor 2 moving in an arbitrary, spatially dependent, magnetic field in two spatial dimensions can be written as the anticommuator of a nilpotent operator and its hermitian conjugate. Consequently, the Hamiltonians for the two different spin projections form partners of a supersymmetric quantum mechanical system. The resulting supersymmetry algebra can then be exploited to explicitly construct the exact zero energy ground state wavefunction for the system. Modulo this ground state, the remainder of the eigenstates and eigenvalues of the two partner Hamiltonians form positive energy degenerate pairs. We also construct the spatially asymptotic form of the magnetic field which produces a finite magnetic flux and associated zero energy normalizable ground state wavefunction.Comment: 10 pages, LaTe

    Holographic metals at finite temperature

    Full text link
    A holographic dual description of a 2+1 dimensional system of strongly interacting fermions at low temperature and finite charge density is given in terms of an electron cloud suspended over the horizon of a charged black hole in asymptotically AdS spacetime. The electron star of Hartnoll and Tavanfar is recovered in the limit of zero temperature, while at higher temperatures the fraction of charge carried by the electron cloud is reduced and at a critical temperature there is a second order phase transition to a configuration with only a charged black hole. The geometric structure implies that finite temperature transport coefficients, including the AC electrical conductivity, only receive contributions from bulk fermions within a finite band in the radial direction.Comment: LaTex 16 pages, 12 figures, v2: Added reference. Error in free energy corrected. Phase transition to AdS-RN black brane is third order rather than second order as was claimed previousl

    Winding effects on brane/anti-brane pairs

    Full text link
    We study a brane/anti-brane configuration which is separated along a compact direction by constructing a tachyon effective action which takes into account transverse scalars. Such an action is relevant in the study of HQCD model of Sakai and Sugimoto of chiral symmetry breaking, where the size of the compact circle sets the confinement scale. Our approach is motivated by string theory orbifold constructions and gives a route to model inhomogeneous tachyon decay. We illustrate the techniques involved with a relatively simple example of a harmonic oscillator on a circle. We will then repeat the analysis for the Sakai-Sugimoto model and show that by integrating out the winding modes will provide us with a renormalized action with a lower energy than that of truncating to zero winding sector.Comment: 21 pages, 3 figures. v3: discussion and references added, published versio

    Fractionalization of holographic Fermi surfaces

    Full text link
    Zero temperature states of matter are holographically described by a spacetime with an asymptotic electric flux. This flux can be sourced either by explicit charged matter fields in the bulk, by an extremal black hole horizon, or by a combination of the two. We refer to these as mesonic, fully fractionalized and partially fractionalized phases of matter, respectively. By coupling a charged fluid of fermions to an asymptotically AdS_4 Einstein-Maxwell-dilaton theory, we exhibit quantum phase transitions between all three of these phases. The onset of fractionalization can be either a first order or continuous phase transition. In the latter case, at the quantum critical point the theory displays an emergent Lifshitz scaling symmetry in the IR.Comment: 1+24 pages. 7 figure

    Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas, and Holographic Duality

    Get PDF
    Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical, and that do not have a simple description in terms of weakly interacting quasi-particles. Two systems that have recently attracted a great deal of interest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These systems differ by more than 20 orders of magnitude in temperature, but they were shown to exhibit very similar hydrodynamic flow. In particular, both fluids exhibit a robustly low shear viscosity to entropy density ratio which is characteristic of quantum fluids described by holographic duality, a mapping from strongly correlated quantum field theories to weakly curved higher dimensional classical gravity. This review explores the connection between these fields, and it also serves as an introduction to the Focus Issue of New Journal of Physics on Strongly Correlated Quantum Fluids: from Ultracold Quantum Gases to QCD Plasmas. The presentation is made accessible to the general physics reader and includes discussions of the latest research developments in all three areas.Comment: 138 pages, 25 figures, review associated with New Journal of Physics special issue "Focus on Strongly Correlated Quantum Fluids: from Ultracold Quantum Gases to QCD Plasmas" (http://iopscience.iop.org/1367-2630/focus/Focus%20on%20Strongly%20Correlated%20Quantum%20Fluids%20-%20from%20Ultracold%20Quantum%20Gases%20to%20QCD%20Plasmas

    Friedel Oscillations in Holographic Metals

    Full text link
    In this article we study the conditions under which holographic metallic states display Friedel oscillations. We focus on systems where the bulk charge density is not hidden behind a black hole horizon. Understanding holographic Friedel oscillations gives a clean way to characterize the boundary system, complementary to probe fermion calculations. We find that fermions in a "hard wall" AdS geometry unambiguously display Friedel oscillations. However, similar oscillations are washed out for electron stars, suggesting a smeared continuum of Fermi surfaces.Comment: 26 pages, 5 figure

    The Prosensory Function of Sox2 in the Chicken Inner Ear Relies on the Direct Regulation of Atoh1

    Get PDF
    The proneural gene Atoh1 is crucial for the development of inner ear hair cells and it requires the function of the transcription factor Sox2 through yet unknown mechanisms. In the present work, we used the chicken embryo and HEK293T cells to explore the regulation of Atoh1 by Sox2. The results show that hair cells derive from Sox2-positive otic progenitors and that Sox2 directly activates Atoh1 through a transcriptional activator function that requires the integrity of Sox2 DNA binding domain. Atoh1 activation depends on Sox transcription factor binding sites (SoxTFBS) present in the Atoh1 3′ enhancer where Sox2 directly binds, as shown by site directed mutagenesis and chromatin immunoprecipitation (ChIP). In the inner ear, Atoh1 enhancer activity is detected in the neurosensory domain and it depends on Sox2. Dominant negative competition (Sox2HMG-Engrailed) and mutation of the SoxTFBS abolish the reporter activity in vivo. Moreover, ChIP assay in isolated otic vesicles shows that Sox2 is bound to the Atoh1 enhancer in vivo. However, besides activating Atoh1, Sox2 also promotes the expression of Atoh1 negative regulators and the temporal profile of Atoh1 activation by Sox2 is transient suggesting that Sox2 triggers an incoherent feed-forward loop. These results provide a mechanism for the prosensory function of Sox2 in the inner ear. We suggest that sensory competence is established early in otic development through the activation of Atoh1 by Sox2, however, hair cell differentiation is prevented until later stages by the parallel activation of negative regulators of Atoh1 function

    Multiple Promoters and Alternative Splicing: Hoxa5 Transcriptional Complexity in the Mouse Embryo

    Get PDF
    The genomic organization of Hox clusters is fundamental for the precise spatio-temporal regulation and the function of each Hox gene, and hence for correct embryo patterning. Multiple overlapping transcriptional units exist at the Hoxa5 locus reflecting the complexity of Hox clustering: a major form of 1.8 kb corresponding to the two characterized exons of the gene and polyadenylated RNA species of 5.0, 9.5 and 11.0 kb. This transcriptional intricacy raises the question of the involvement of the larger transcripts in Hox function and regulation.We have undertaken the molecular characterization of the Hoxa5 larger transcripts. They initiate from two highly conserved distal promoters, one corresponding to the putative Hoxa6 promoter, and a second located nearby Hoxa7. Alternative splicing is also involved in the generation of the different transcripts. No functional polyadenylation sequence was found at the Hoxa6 locus and all larger transcripts use the polyadenylation site of the Hoxa5 gene. Some larger transcripts are potential Hoxa6/Hoxa5 bicistronic units. However, even though all transcripts could produce the genuine 270 a.a. HOXA5 protein, only the 1.8 kb form is translated into the protein, indicative of its essential role in Hoxa5 gene function. The Hoxa6 mutation disrupts the larger transcripts without major phenotypic impact on axial specification in their expression domain. However, Hoxa5-like skeletal anomalies are observed in Hoxa6 mutants and these defects can be explained by the loss of expression of the 1.8 kb transcript. Our data raise the possibility that the larger transcripts may be involved in Hoxa5 gene regulation.Our observation that the Hoxa5 larger transcripts possess a developmentally-regulated expression combined to the increasing sum of data on the role of long noncoding RNAs in transcriptional regulation suggest that the Hoxa5 larger transcripts may participate in the control of Hox gene expression
    corecore