48 research outputs found
Charged spin 1/2 particle in an arbitrary magnetic field in two spatial dimensions: a supersymmetric quantum mechanical system
It is shown that the 2 X 2 matrix Hamiltonian describing the dynamics of a
charged spin 1/2 particle with g-factor 2 moving in an arbitrary, spatially
dependent, magnetic field in two spatial dimensions can be written as the
anticommuator of a nilpotent operator and its hermitian conjugate.
Consequently, the Hamiltonians for the two different spin projections form
partners of a supersymmetric quantum mechanical system. The resulting
supersymmetry algebra can then be exploited to explicitly construct the exact
zero energy ground state wavefunction for the system. Modulo this ground state,
the remainder of the eigenstates and eigenvalues of the two partner
Hamiltonians form positive energy degenerate pairs. We also construct the
spatially asymptotic form of the magnetic field which produces a finite
magnetic flux and associated zero energy normalizable ground state
wavefunction.Comment: 10 pages, LaTe
Holographic metals at finite temperature
A holographic dual description of a 2+1 dimensional system of strongly
interacting fermions at low temperature and finite charge density is given in
terms of an electron cloud suspended over the horizon of a charged black hole
in asymptotically AdS spacetime. The electron star of Hartnoll and Tavanfar is
recovered in the limit of zero temperature, while at higher temperatures the
fraction of charge carried by the electron cloud is reduced and at a critical
temperature there is a second order phase transition to a configuration with
only a charged black hole. The geometric structure implies that finite
temperature transport coefficients, including the AC electrical conductivity,
only receive contributions from bulk fermions within a finite band in the
radial direction.Comment: LaTex 16 pages, 12 figures, v2: Added reference. Error in free energy
corrected. Phase transition to AdS-RN black brane is third order rather than
second order as was claimed previousl
Winding effects on brane/anti-brane pairs
We study a brane/anti-brane configuration which is separated along a compact
direction by constructing a tachyon effective action which takes into account
transverse scalars. Such an action is relevant in the study of HQCD model of
Sakai and Sugimoto of chiral symmetry breaking, where the size of the compact
circle sets the confinement scale. Our approach is motivated by string theory
orbifold constructions and gives a route to model inhomogeneous tachyon decay.
We illustrate the techniques involved with a relatively simple example of a
harmonic oscillator on a circle. We will then repeat the analysis for the
Sakai-Sugimoto model and show that by integrating out the winding modes will
provide us with a renormalized action with a lower energy than that of
truncating to zero winding sector.Comment: 21 pages, 3 figures. v3: discussion and references added, published
versio
Fractionalization of holographic Fermi surfaces
Zero temperature states of matter are holographically described by a
spacetime with an asymptotic electric flux. This flux can be sourced either by
explicit charged matter fields in the bulk, by an extremal black hole horizon,
or by a combination of the two. We refer to these as mesonic, fully
fractionalized and partially fractionalized phases of matter, respectively. By
coupling a charged fluid of fermions to an asymptotically AdS_4
Einstein-Maxwell-dilaton theory, we exhibit quantum phase transitions between
all three of these phases. The onset of fractionalization can be either a first
order or continuous phase transition. In the latter case, at the quantum
critical point the theory displays an emergent Lifshitz scaling symmetry in the
IR.Comment: 1+24 pages. 7 figure
Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas, and Holographic Duality
Strongly correlated quantum fluids are phases of matter that are
intrinsically quantum mechanical, and that do not have a simple description in
terms of weakly interacting quasi-particles. Two systems that have recently
attracted a great deal of interest are the quark-gluon plasma, a plasma of
strongly interacting quarks and gluons produced in relativistic heavy ion
collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic
gases confined in optical or magnetic traps. These systems differ by more than
20 orders of magnitude in temperature, but they were shown to exhibit very
similar hydrodynamic flow. In particular, both fluids exhibit a robustly low
shear viscosity to entropy density ratio which is characteristic of quantum
fluids described by holographic duality, a mapping from strongly correlated
quantum field theories to weakly curved higher dimensional classical gravity.
This review explores the connection between these fields, and it also serves as
an introduction to the Focus Issue of New Journal of Physics on Strongly
Correlated Quantum Fluids: from Ultracold Quantum Gases to QCD Plasmas. The
presentation is made accessible to the general physics reader and includes
discussions of the latest research developments in all three areas.Comment: 138 pages, 25 figures, review associated with New Journal of Physics
special issue "Focus on Strongly Correlated Quantum Fluids: from Ultracold
Quantum Gases to QCD Plasmas"
(http://iopscience.iop.org/1367-2630/focus/Focus%20on%20Strongly%20Correlated%20Quantum%20Fluids%20-%20from%20Ultracold%20Quantum%20Gases%20to%20QCD%20Plasmas
Friedel Oscillations in Holographic Metals
In this article we study the conditions under which holographic metallic
states display Friedel oscillations. We focus on systems where the bulk charge
density is not hidden behind a black hole horizon. Understanding holographic
Friedel oscillations gives a clean way to characterize the boundary system,
complementary to probe fermion calculations. We find that fermions in a "hard
wall" AdS geometry unambiguously display Friedel oscillations. However, similar
oscillations are washed out for electron stars, suggesting a smeared continuum
of Fermi surfaces.Comment: 26 pages, 5 figure
The Prosensory Function of Sox2 in the Chicken Inner Ear Relies on the Direct Regulation of Atoh1
The proneural gene Atoh1 is crucial for the development of inner ear hair cells and it requires the function of the transcription factor Sox2 through yet unknown mechanisms. In the present work, we used the chicken embryo and HEK293T cells to explore the regulation of Atoh1 by Sox2. The results show that hair cells derive from Sox2-positive otic progenitors and that Sox2 directly activates Atoh1 through a transcriptional activator function that requires the integrity of Sox2 DNA binding domain. Atoh1 activation depends on Sox transcription factor binding sites (SoxTFBS) present in the Atoh1 3′ enhancer where Sox2 directly binds, as shown by site directed mutagenesis and chromatin immunoprecipitation (ChIP). In the inner ear, Atoh1 enhancer activity is detected in the neurosensory domain and it depends on Sox2. Dominant negative competition (Sox2HMG-Engrailed) and mutation of the SoxTFBS abolish the reporter activity in vivo. Moreover, ChIP assay in isolated otic vesicles shows that Sox2 is bound to the Atoh1 enhancer in vivo. However, besides activating Atoh1, Sox2 also promotes the expression of Atoh1 negative regulators and the temporal profile of Atoh1 activation by Sox2 is transient suggesting that Sox2 triggers an incoherent feed-forward loop. These results provide a mechanism for the prosensory function of Sox2 in the inner ear. We suggest that sensory competence is established early in otic development through the activation of Atoh1 by Sox2, however, hair cell differentiation is prevented until later stages by the parallel activation of negative regulators of Atoh1 function
Multiple Promoters and Alternative Splicing: Hoxa5 Transcriptional Complexity in the Mouse Embryo
The genomic organization of Hox clusters is fundamental for the precise spatio-temporal regulation and the function of each Hox gene, and hence for correct embryo patterning. Multiple overlapping transcriptional units exist at the Hoxa5 locus reflecting the complexity of Hox clustering: a major form of 1.8 kb corresponding to the two characterized exons of the gene and polyadenylated RNA species of 5.0, 9.5 and 11.0 kb. This transcriptional intricacy raises the question of the involvement of the larger transcripts in Hox function and regulation.We have undertaken the molecular characterization of the Hoxa5 larger transcripts. They initiate from two highly conserved distal promoters, one corresponding to the putative Hoxa6 promoter, and a second located nearby Hoxa7. Alternative splicing is also involved in the generation of the different transcripts. No functional polyadenylation sequence was found at the Hoxa6 locus and all larger transcripts use the polyadenylation site of the Hoxa5 gene. Some larger transcripts are potential Hoxa6/Hoxa5 bicistronic units. However, even though all transcripts could produce the genuine 270 a.a. HOXA5 protein, only the 1.8 kb form is translated into the protein, indicative of its essential role in Hoxa5 gene function. The Hoxa6 mutation disrupts the larger transcripts without major phenotypic impact on axial specification in their expression domain. However, Hoxa5-like skeletal anomalies are observed in Hoxa6 mutants and these defects can be explained by the loss of expression of the 1.8 kb transcript. Our data raise the possibility that the larger transcripts may be involved in Hoxa5 gene regulation.Our observation that the Hoxa5 larger transcripts possess a developmentally-regulated expression combined to the increasing sum of data on the role of long noncoding RNAs in transcriptional regulation suggest that the Hoxa5 larger transcripts may participate in the control of Hox gene expression