101 research outputs found

    Gas Clumping in the Outskirts of Galaxy Clusters, an Assessment of the Sensitivity of STAR-X

    Full text link
    In the outskirts of galaxy clusters, entropy profiles measured from X-ray observations of the hot intracluster medium (ICM) drops off unexpectedly. One possible explanation for this effect is gas clumping, where pockets of cooler and denser structures within the ICM are present. Current observatories are unable to directly detect these hypothetical gas clumps. One of the science drivers of the proposed STAR-X observatory is to resolve these or similar structures. Its high spatial resolution, large effective area, and low instrumental background make STAR-X ideal for directly detecting and characterizing clumps and diffuse emission in cluster outskirts. The aim of this work is to simulate observations of clumping in clusters to determine how well STAR-X will be able to detect clumps, as well as what clumping properties reproduce observed entropy profiles. This is achieved by using yt, pyXSIM, SOXS, and other tools to inject ideally modeled clumps into three-dimensional models derived from actual clusters using their observed profiles from other X-ray missions. Radial temperature and surface brightness profiles are then extracted from mock observations using concentric annuli. We find that in simulated observations for STAR-X, a parameter space of clump properties exists where gas clumps can be successfully identified using wavdetect and masked, and are able to recover the true cluster profiles. This demonstrates that STAR-X could be capable of detecting substructure in the outskirts of nearby clusters and that the properties of both the outskirts and the clumps will be revealed.Comment: This is a pre-copyedited, author-produced PDF of an article accepted for publication in RAS Techniques and Instruments (RASTI) following peer review. The version of record is available online at: https://academic.oup.com/rasti/article/doi/10.1093/rasti/rzad042/725882

    Time course study of oxidative and nitrosative stress and antioxidant enzymes in K(2)Cr(2)O(7)-induced nephrotoxicity

    Get PDF
    BACKGROUND: Potassium dichromate (K(2)Cr(2)O(7))-induced nephrotoxicity is associated with oxidative and nitrosative stress. In this study we investigated the relation between the time course of the oxidative and nitrosative stress with kidney damage and alterations in the following antioxidant enzymes: Cu, Zn superoxide dismutase (Cu, Zn-SOD), Mn-SOD, glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT). METHODS: Nephrotoxicity was induced in rats by a single injection of K(2)Cr(2)O(7). Groups of animals were sacrificed on days 1,2,3,4,6,8,10, and 12. Nephrotoxicity was evaluated by histological studies and by measuring creatinine clearance, serum creatinine, blood urea nitrogen (BUN), and urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) and total protein. Oxidative and nitrosative stress were measured by immunohistochemical localization of protein carbonyls and 3-nitrotyrosine, respectively. Cu, Zn-SOD, Mn-SOD, and CAT were studied by immunohistochemical localization. The activity of total SOD, CAT, GPx, and GR was also measured as well as serum and kidney content of chromium and urinary excretion of NO(2 )(-)/NO(3)(-). Data were compared by two-way analysis of variance followed by a post hoc test. RESULTS: Serum and kidney chromium content increased reaching the highest value on day 1. Nephrotoxicity was made evident by the decrease in creatinine clearance (days 1–4) and by the increase in serum creatinine (days 1–4), BUN (days 1–6), urinary excretion of NAG (days 1–4), and total protein (day 1–6) and by the structural damage to the proximal tubules (days 1–6). Oxidative and nitrosative stress were clearly evident on days 1–8. Urinary excretion of NO(2)(-)/NO(3)(- )decreased on days 2–6. Mn-SOD and Cu, Zn-SOD, estimated by immunohistochemistry, and total SOD activity remained unchanged. Activity of GPx decreased on days 3–12 and those of GR and CAT on days 2–10. Similar findings were observed by immunohistochemistry of CAT. CONCLUSION: These data show the association between oxidative and nitrosative stress with functional and structural renal damage induced by K(2)Cr(2)O(7). Renal antioxidant enzymes were regulated differentially and were not closely associated with oxidative or nitrosative stress or with kidney damage. In addition, the decrease in the urinary excretion of NO(2)(-)/NO(3)(- )was associated with the renal nitrosative stress suggesting that nitric oxide was derived to the formation of reactive nitrogen species involved in protein nitration
    • …
    corecore