932 research outputs found

    The role of binaries in the enrichment of the early Galactic halo. II. Carbon-Enhanced Metal-Poor Stars - CEMP-no stars

    Full text link
    The detailed composition of most metal-poor halo stars has been found to be very uniform. However, a fraction of 20-70% (increasing with decreasing metallicity) exhibit dramatic enhancements in their abundances of carbon - the so-called carbon-enhanced metal-poor (CEMP) stars. A key question for Galactic chemical evolution models is whether this non-standard composition reflects that of the stellar natal clouds, or is due to local, post-birth mass transfer of chemically processed material from a binary companion; CEMP stars should then all be members of binary systems. Our aim is to determine the frequency and orbital parameters of binaries among CEMP stars with and without over-abundances of neutron-capture elements - CEMP-s and CEMP-no stars, respectively - as a test of this local mass-transfer scenario. This paper discusses a sample of 24 CEMP-no stars, while a subsequent paper will consider a similar sample of CEMP-s stars. Most programme stars exhibit no statistically significant radial-velocit variation over this period and appear to be single, while four are found to be binaries with orbital periods of 300-2,000 days and normal eccentricity; the binary frequency for the sample is 17+-9%. The single stars mostly belong to the recently-identified ``low-C band'', while the binaries have higher absolute carbon abundances. We conclude that the nucleosynthetic process responsible for the strong carbon excess in these ancient stars is unrelated to their binary status; the carbon was imprinted on their natal molecular clouds in the early Galactic ISM by an even earlier, external source, strongly indicating that the CEMP-no stars are likely bona fide second-generation stars. We discuss potential production sites for carbon and its transfer across interstellar distances in the early ISM, and implications for the composition of high-redshift DLA systems. Abridged.Comment: 16 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    Particle Physics Probes Of Extra Spacetime Dimensions

    Full text link
    The possibility that spacetime is extended beyond the familiar 3+1-dimensions has intrigued physicists for a century. Indeed, the consequences of a dimensionally richer spacetime would be profound. Recently, new theories with higher dimensional spacetimes have been developed to resolve the hierarchy problem in particle physics. These scenarios make distinct predictions which allow for experiment to probe the existence of extra dimensions in new ways. We review the conceptual framework of these scenarios, their implications in collider and short-range gravity experiments, their astrophysical and cosmological effects, as well as the constraints placed on these models from present data.Comment: Submitted to Annual Review of Nuclear and Particle Science, 29 page

    Target detection in insects: optical, neural and behavioral optimizations.

    Get PDF
    This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/j.conb.2016.09.001Motion vision provides important cues for many tasks. Flying insects, for example, may pursue small, fast moving targets for mating or feeding purposes, even when these are detected against self-generated optic flow. Since insects are small, with size-constrained eyes and brains, they have evolved to optimize their optical, neural and behavioral target visualization solutions. Indeed, even if evolutionarily distant insects display different pursuit strategies, target neuron physiology is strikingly similar. Furthermore, the coarse spatial resolution of the insect compound eye might actually be beneficial when it comes to detection of moving targets. In conclusion, tiny insects show higher than expected performance in target visualization tasks.Air Force Office of Scientific Research (Grant ID: FA9550-15-1-0188

    Electrically charged fluids with pressure in Newtonian gravitation and general relativity in d spacetime dimensions: theorems and results for Weyl type systems

    Full text link
    Previous theorems concerning Weyl type systems, including Majumdar-Papapetrou systems, are generalized in two ways, namely, we take these theorems into d spacetime dimensions (d4{\rm d}\geq4), and we also consider the very interesting Weyl-Guilfoyle systems, i.e., general relativistic charged fluids with nonzero pressure. In particular within Newton-Coulomb theory of charged gravitating fluids, a theorem by Bonnor (1980) in three-dimensional space is generalized to arbitrary (d1)>3({\rm d}-1)>3 space dimensions. Then, we prove a new theorem for charged gravitating fluid systems in which we find the condition that the charge density and the matter density should obey. Within general relativity coupled to charged dust fluids, a theorem by De and Raychaudhuri (1968) in four-dimensional spacetimes in rendered into arbitrary d>4{\rm d}>4 dimensions. Then a theorem, new in d=4{\rm d}=4 and d>4{\rm d}>4 dimensions, for Weyl-Guilfoyle systems, is stated and proved, in which we find the condition that the charge density, the matter density, the pressure, and the electromagnetic energy density should obey. This theorem comprises, as particular cases, a theorem by Gautreau and Hoffman (1973) and results in four dimensions by Guilfoyle (1999). Upon connection of an interior charged solution to an exterior Tangherlini solution (i.e., a Reissner-Nordstr\"om solution in d-dimensions), one is able to give a general definition for gravitational mass for this kind of relativistic systems and find a mass relation with the several quantities of the interior solution. It is also shown that for sources of finite extent the mass is identical to the Tolman mass.Comment: 27 page

    Universal properties of Fermi gases in arbitrary dimensions

    Full text link
    We consider spin-1/2 Fermi gases in arbitrary, integer or non-integer spatial dimensions, interacting via a Dirac delta potential. We first generalize the method of Tan's distributions and implement short-range boundary conditions to arbitrary dimension and we obtain a set of universal relations for the Fermi gas. Three-dimensional scattering under very general conditions of transversal confinement is described by an effectively reduced-dimensional scattering length, which we show depends on the three-dimensional scattering length in a universal way. Our formula for non-integer dimensions interpolates between the known results in integer dimensions 1, 2 and 3. Without any need to solve the associated multichannel scattering problem, we find that confinement-induced resonances occur in all dimensions different from D=2, while reduced-dimensional contacts, related to the tails of the momentum distributions, are connected to the three-dimensional contact by a correction factor of purely geometric origin.Comment: 6 pages, 0 figure

    Inducing charges and currents from extra dimensions

    Full text link
    In a particular variant of Kaluza-Klein theory, the so-called induced-matter theory (IMT), it is shown that any configuration of matter may be geometrically induced from a five-dimensional vacuum space. By using a similar approach we show that any distribution of charges and currents may also be induced from a five-dimensional vacuum space. Whereas in the case of IMT the geometry is Riemannian and the fundamental equations are the five-dimensional Einstein equations in vacuum, here we consider a Minkowskian geometry and the five-dimensional Maxwell equations in vacuum.Comment: 8 pages. Accepted for publication in Modern Physics Letters

    New biocide active substances:needs and challenges in the EU as viewed by industry

    Full text link
    Emerging regulatory initiatives in the EU are driving towards more environmentally safe chemicals, used as such or in a wide range of products and applications. The aim of the regulations is also to foster and support the emergence of new or safer alternatives and to drive innovations thereof. Biocides are chemicals, which are used in a vast and steadily growing number of applications in order to preserve product safety and quality, however, the number of the Active Substances (AS) used in biocides is decreasing in the EU concurrent with the implementation of the Biocidal Product Directive (BPD). Accordingly, the present study attempts to elucidate views of representatives of the biocide industry in order to identify some of the present drivers and challenges of new AS development in the different biocide application areas, with emphasis on the economic feasibility of safer biocide development in the future. Notably, the costs of vertebrate testing are a major factor in development of new AS. Therefore, an evaluation of the costs of such tests and their total proportion of total AS development costs is also discussed. Industry expectations for the implementation of the BPD and impacts thereof are presented.<br

    Lead abundance in the uranium star CS 31082-001

    Full text link
    In a previous paper we were able to measure the abundance of uranium and thorium in the very-metal poor halo giant BPS CS 31082-001, but only obtained an upper limit for the abundance of lead (Pb). We have got from ESO 17 hours of additional exposure on this star in order to secure a detection of the minimum amount of lead expected to be present in CS 31082-001, the amount arising from the decay of the original content of Th and U in the star. We report here this successful detection. We find an LTE abundance log(Pb/H)+12=-0.55 \pm 0.15 dex, one dex below the upper limits given by other authors for the similar stars CS 22892-052 and BD +17d3248, also enhanced in r-process elements. From the observed present abundances of Th and U in the star, the expected amount of Pb produced by the decay of 232Th, and 238U alone, over 12-15 Gyr is -0.73\pm 0.17 dex. The decay of 235U is more difficult to estimate, but is probably slightly below the contribution of 238U, making the contribution of the 3 actinides only slightly below, or even equal to, the measured abundance. The contribution from the decay of 234U has was not included, for lack of published data. In this sense our determination is a lower limit to the contribution of actinides to lead production. We comment this result, and we note that if a NLTE analysis, not yet possible, doubles our observed abundance, the decay of the 3 actinides will still represent 50 per cent of the total lead, a proportion higher than the values considered so far in the literature.Comment: 4 pages, LateX, A&A Letters Accepte

    Lithiation of InSb and Cu2_2Sb : A Theoretical Investigation

    Full text link
    In this work the mechanism of Li insertion/intercalation in the anode materials InSb and Cu2_2Sb is investigated by means of the first principles total energy calculations. The total charge densities for the lithiated products of the two compounds are presented. Based on these results the change in the bonding character on lithiation is discussed. Further, the isomer shift for InSb and Cu2_2Sb and there various lithiated products is reported. The average insertion/intercalation voltage and volume expansion for transitions from InSb to Li2_2InSb and Cu2_2Sb to Li2_2CuSb are calculated and found to be in good agreement with the experimental values. These findings help to resolve the controversy regarding the lithiation mechanism in InSb.Comment: 5 pages 3 figure
    corecore