137 research outputs found

    Giant Negative Thermal Expansion Induced by the Synergistic Effects of Ferroelectrostriction and Spin-Crossover in PbTiO3-Based Perovskites

    Full text link
    The discovery of unusual negative thermal expansion (NTE) provides the opportunity to control the common but much desired property of thermal expansion, which is valuable not only in scientific interests but also in practical applications. However, most of the available NTE materials are limited to a narrow temperature range, and the NTE effect is generally weakened by means of various modifications. Here, we report an enhanced NTE effect that occurs over a wide temperature range (\alpha V = -5.24 * 10-5 {\deg}C^-1, 25-575 {\deg} C), and this NTE effect is accompanied by an abnormal enhanced tetragonality, a large spontaneous polarization, and a G-type antiferromagnetic ordering in the present perovskite-type ferroelectric of (1-x)PbTiO3-xBiCoO3. Specifically, for the composition of 0.5PbTiO3-0.5BiCoO3, an extensive volumetric contraction of ~4.8 % has been observed near the Curie temperature of 700 {\deg}C, which represents the highest level in PbTiO3-based ferroelectrics. According to our experimental and theoretical results, the giant NTE originates from a synergistic effect of the ferroelectrostriction and spin-crossover of cobalt on the crystal lattice. The actual NTE mechanism is contrasted with previous functional NTE materials, in which the NTE is simply coupled with one ordering such as electronic, magnetic, or ferroelectric ordering. The present study sheds light on the understanding of NTE mechanisms and it attests that NTE could be simultaneouslycoupled with different orderings, which will pave a new way toward the design of large NTE materials.Comment: 30 page

    Bulk charge density wave and electron-phonon coupling in superconducting copper oxychlorides

    Full text link
    Bulk charge density waves (CDWs) are now reported in nearly all high-temperature superconducting (HTS) cuprates, with the noticeable exception of one particular family: the copper oxychlorides. Here, we used resonant inelastic X-ray scattering (RIXS) to reveal a bulk CDW in these materials. Combining RIXS with non-resonant IXS, we investigate the interplay between the lattice excitations and the CDW, and evidence bond-stretching (BS) phonon anomalies at the CDW wave-vector. We propose that such electron-phonon anomalies occur in the presence of dispersive charge excitations emanating from the CDW and interacting with the BS phonon. Our observations in a structurally simple cuprate promises to better connect bulk and surface properties and bridge the gap between theory and experiment

    Superconductivity at 5.4 K in β\beta-Bi2_2Pd

    Full text link
    We investigate bulk superconductivity in a high-quality single crystal of Bi2_2Pd (β\beta-Bi2_2Pd, space group; I4/mmm) at temperatures less than 5.4 K by exploring its electrical resistivity, magnetic susceptibility, and specific heat. The temperature dependence of the electrical resistivity shows convex-upward behaviors at temperatures greater than 40-50 K, which can be explained by a parallel-resistor model. In addition, we demonstrate that this material is a multiple-band/multiple-gap superconductor based on the temperature dependences of the specific heat and the upper critical field.Comment: 4 pages, 3 figure

    Deep Annotation of Populus trichocarpa microRNAs from Diverse Tissue Sets

    Get PDF
    Populus trichocarpa is an important woody model organism whose entire genome has been sequenced. This resource has facilitated the annotation of microRNAs (miRNAs), which are short non-coding RNAs with critical regulatory functions. However, despite their developmental importance, P. trichocarpa miRNAs have yet to be annotated from numerous important tissues. Here we significantly expand the breadth of tissue sampling and sequencing depth for miRNA annotation in P. trichocarpa using high-throughput smallRNA (sRNA) sequencing. miRNA annotation was performed using three individual next-generation sRNA sequencing runs from separate leaves, xylem, and mechanically treated xylem, as well as a fourth run using a pooled sample containing vegetative apices, male flowers, female flowers, female apical buds, and male apical and lateral buds. A total of 276 miRNAs were identified from these datasets, including 155 previously unannotated miRNAs, most of which are P. trichocarpa specific. Importantly, we identified several xylem-enriched miRNAs predicted to target genes known to be important in secondary growth, including the critical reaction wood enzyme xyloglucan endo-transglycosylase/hydrolase and vascular-related transcription factors. This study provides a thorough genome-wide annotation of miRNAs in P. trichocarpa through deep sRNA sequencing from diverse tissue sets. Our data significantly expands the P. trichocarpa miRNA repertoire, which will facilitate a broad range of research in this major model system

    Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cultivated watermelon [<it>Citrullus lanatus </it>(Thunb.) Matsum. & Nakai var. <it>lanatus</it>] is an important agriculture crop world-wide. The fruit of watermelon undergoes distinct stages of development with dramatic changes in its size, color, sweetness, texture and aroma. In order to better understand the genetic and molecular basis of these changes and significantly expand the watermelon transcript catalog, we have selected four critical stages of watermelon fruit development and used Roche/454 next-generation sequencing technology to generate a large expressed sequence tag (EST) dataset and a comprehensive transcriptome profile for watermelon fruit flesh tissues.</p> <p>Results</p> <p>We performed half Roche/454 GS-FLX run for each of the four watermelon fruit developmental stages (immature white, white-pink flesh, red flesh and over-ripe) and obtained 577,023 high quality ESTs with an average length of 302.8 bp. <it>De novo </it>assembly of these ESTs together with 11,786 watermelon ESTs collected from GenBank produced 75,068 unigenes with a total length of approximately 31.8 Mb. Overall 54.9% of the unigenes showed significant similarities to known sequences in GenBank non-redundant (nr) protein database and around two-thirds of them matched proteins of cucumber, the most closely-related species with a sequenced genome. The unigenes were further assigned with gene ontology (GO) terms and mapped to biochemical pathways. More than 5,000 SSRs were identified from the EST collection. Furthermore we carried out digital gene expression analysis of these ESTs and identified 3,023 genes that were differentially expressed during watermelon fruit development and ripening, which provided novel insights into watermelon fruit biology and a comprehensive resource of candidate genes for future functional analysis. We then generated profiles of several interesting metabolites that are important to fruit quality including pigmentation and sweetness. Integrative analysis of metabolite and digital gene expression profiles helped elucidating molecular mechanisms governing these important quality-related traits during watermelon fruit development.</p> <p>Conclusion</p> <p>We have generated a large collection of watermelon ESTs, which represents a significant expansion of the current transcript catalog of watermelon and a valuable resource for future studies on the genomics of watermelon and other closely-related species. Digital expression analysis of this EST collection allowed us to identify a large set of genes that were differentially expressed during watermelon fruit development and ripening, which provide a rich source of candidates for future functional analysis and represent a valuable increase in our knowledge base of watermelon fruit biology.</p

    DYNAMICS OF THE SPIN FLOP IN ANTIFERROMAGNET

    No full text
    La dynamique du retournement de spin dans une substance antiferromagnétique orthorhombique a été étudiée analytiquement et puis, par une méthode numérique, ceci a été appliqué au cas de CuCl2.2 H2O (orthorhombique) et MnF2 (uniaxiale).The dynamics of the spin flop in an orthorhombic antiferromagnet is studied analytically, and then a computational method is used to study the spin flop in orthorhombic CuCl2. 2H2O and in uniaxial MnF2
    corecore